Loading…

DeCNT: Deep Deformable CNN for Table Detection

This paper presents a novel approach for the detection of tables present in documents, leveraging the potential of deep neural networks. Conventional approaches for table detection rely on heuristics that are error prone and specific to a dataset. In contrast, the presented approach harvests the pot...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018, Vol.6, p.74151-74161
Main Authors: Siddiqui, Shoaib Ahmed, Malik, Muhammad Imran, Agne, Stefan, Dengel, Andreas, Ahmed, Sheraz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-7161a96a88668d7677fe0731aecd02503df01d9b15e6fe0a60237b6883e0f41d3
cites cdi_FETCH-LOGICAL-c408t-7161a96a88668d7677fe0731aecd02503df01d9b15e6fe0a60237b6883e0f41d3
container_end_page 74161
container_issue
container_start_page 74151
container_title IEEE access
container_volume 6
creator Siddiqui, Shoaib Ahmed
Malik, Muhammad Imran
Agne, Stefan
Dengel, Andreas
Ahmed, Sheraz
description This paper presents a novel approach for the detection of tables present in documents, leveraging the potential of deep neural networks. Conventional approaches for table detection rely on heuristics that are error prone and specific to a dataset. In contrast, the presented approach harvests the potential of data to recognize tables of arbitrary layout. Most of the prior approaches for table detection are only applicable to PDFs, whereas, the presented approach directly works on images making it generally applicable to any format. The presented approach is based on a novel combination of deformable CNN with faster R-CNN/FPN. Conventional CNN has a fixed receptive field which is problematic for table detection since tables can be present at arbitrary scales along with arbitrary transformations (orientation). Deformable convolution conditions its receptive field on the input itself allowing it to mold its receptive field according to its input. This adaptation of the receptive field enables the network to cater for tables of arbitrary layout. We evaluated the proposed approach on two major publicly available table detection datasets: ICDAR-2013 and ICDAR-2017 POD. The presented approach was able to surpass the state-of-the-art performance on both ICDAR-2013 and ICDAR-2017 POD datasets with a F-measure of 0.994 and 0.968, respectively, indicating its effectiveness and superiority for the task of table detection.
doi_str_mv 10.1109/ACCESS.2018.2880211
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455916118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8540832</ieee_id><doaj_id>oai_doaj_org_article_bc6bf9b275b84e04a1f763123669d0e8</doaj_id><sourcerecordid>2455916118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7161a96a88668d7677fe0731aecd02503df01d9b15e6fe0a60237b6883e0f41d3</originalsourceid><addsrcrecordid>eNpNkMtuwjAQRa2qlYooX8AmUtehHjt-pDsUaIuE6AK6tpxkXAUBpk5Y9O9rCEL1Yux53OvRIWQMdAJA85dpUczX6wmjoCdMa8oA7siAgcxTLri8__d-JKO23dJ4dCwJNSCTGRarzWsyQzzG4HzY23KHSbFaJTFJNpdshh1WXeMPT-TB2V2Lo-s9JF9v803xkS4_3xfFdJlWGdVdqkCCzaXVWkpdK6mUQ6o4WKxqygTltaNQ5yUIlLFjJWVclVJrjtRlUPMhWfS-tbdbcwzN3oZf421jLgUfvo0NXVPt0JSVLF1eMiVKnSHNLDglOTAuZV5T1NHrufc6Bv9zwrYzW38Kh7i-YZkQedwVzlO8n6qCb9uA7vYrUHPmbHrO5szZXDlH1bhXNYh4U2gRKXDG_wCsoHS8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455916118</pqid></control><display><type>article</type><title>DeCNT: Deep Deformable CNN for Table Detection</title><source>IEEE Open Access Journals</source><creator>Siddiqui, Shoaib Ahmed ; Malik, Muhammad Imran ; Agne, Stefan ; Dengel, Andreas ; Ahmed, Sheraz</creator><creatorcontrib>Siddiqui, Shoaib Ahmed ; Malik, Muhammad Imran ; Agne, Stefan ; Dengel, Andreas ; Ahmed, Sheraz</creatorcontrib><description>This paper presents a novel approach for the detection of tables present in documents, leveraging the potential of deep neural networks. Conventional approaches for table detection rely on heuristics that are error prone and specific to a dataset. In contrast, the presented approach harvests the potential of data to recognize tables of arbitrary layout. Most of the prior approaches for table detection are only applicable to PDFs, whereas, the presented approach directly works on images making it generally applicable to any format. The presented approach is based on a novel combination of deformable CNN with faster R-CNN/FPN. Conventional CNN has a fixed receptive field which is problematic for table detection since tables can be present at arbitrary scales along with arbitrary transformations (orientation). Deformable convolution conditions its receptive field on the input itself allowing it to mold its receptive field according to its input. This adaptation of the receptive field enables the network to cater for tables of arbitrary layout. We evaluated the proposed approach on two major publicly available table detection datasets: ICDAR-2013 and ICDAR-2017 POD. The presented approach was able to surpass the state-of-the-art performance on both ICDAR-2013 and ICDAR-2017 POD datasets with a F-measure of 0.994 and 0.968, respectively, indicating its effectiveness and superiority for the task of table detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2880211</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolution ; convolutional neural networks ; Data mining ; Datasets ; Deep learning ; deformable convolution ; Deformation ; faster R-CNN ; Feature extraction ; Formability ; FPN ; Hidden Markov models ; Layout ; Layouts ; object detection ; representation learning ; table detection ; table spotting ; Task analysis</subject><ispartof>IEEE access, 2018, Vol.6, p.74151-74161</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7161a96a88668d7677fe0731aecd02503df01d9b15e6fe0a60237b6883e0f41d3</citedby><cites>FETCH-LOGICAL-c408t-7161a96a88668d7677fe0731aecd02503df01d9b15e6fe0a60237b6883e0f41d3</cites><orcidid>0000-0003-4600-7331 ; 0000-0002-4239-6520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8540832$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Siddiqui, Shoaib Ahmed</creatorcontrib><creatorcontrib>Malik, Muhammad Imran</creatorcontrib><creatorcontrib>Agne, Stefan</creatorcontrib><creatorcontrib>Dengel, Andreas</creatorcontrib><creatorcontrib>Ahmed, Sheraz</creatorcontrib><title>DeCNT: Deep Deformable CNN for Table Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a novel approach for the detection of tables present in documents, leveraging the potential of deep neural networks. Conventional approaches for table detection rely on heuristics that are error prone and specific to a dataset. In contrast, the presented approach harvests the potential of data to recognize tables of arbitrary layout. Most of the prior approaches for table detection are only applicable to PDFs, whereas, the presented approach directly works on images making it generally applicable to any format. The presented approach is based on a novel combination of deformable CNN with faster R-CNN/FPN. Conventional CNN has a fixed receptive field which is problematic for table detection since tables can be present at arbitrary scales along with arbitrary transformations (orientation). Deformable convolution conditions its receptive field on the input itself allowing it to mold its receptive field according to its input. This adaptation of the receptive field enables the network to cater for tables of arbitrary layout. We evaluated the proposed approach on two major publicly available table detection datasets: ICDAR-2013 and ICDAR-2017 POD. The presented approach was able to surpass the state-of-the-art performance on both ICDAR-2013 and ICDAR-2017 POD datasets with a F-measure of 0.994 and 0.968, respectively, indicating its effectiveness and superiority for the task of table detection.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>convolutional neural networks</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>deformable convolution</subject><subject>Deformation</subject><subject>faster R-CNN</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>FPN</subject><subject>Hidden Markov models</subject><subject>Layout</subject><subject>Layouts</subject><subject>object detection</subject><subject>representation learning</subject><subject>table detection</subject><subject>table spotting</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtuwjAQRa2qlYooX8AmUtehHjt-pDsUaIuE6AK6tpxkXAUBpk5Y9O9rCEL1Yux53OvRIWQMdAJA85dpUczX6wmjoCdMa8oA7siAgcxTLri8__d-JKO23dJ4dCwJNSCTGRarzWsyQzzG4HzY23KHSbFaJTFJNpdshh1WXeMPT-TB2V2Lo-s9JF9v803xkS4_3xfFdJlWGdVdqkCCzaXVWkpdK6mUQ6o4WKxqygTltaNQ5yUIlLFjJWVclVJrjtRlUPMhWfS-tbdbcwzN3oZf421jLgUfvo0NXVPt0JSVLF1eMiVKnSHNLDglOTAuZV5T1NHrufc6Bv9zwrYzW38Kh7i-YZkQedwVzlO8n6qCb9uA7vYrUHPmbHrO5szZXDlH1bhXNYh4U2gRKXDG_wCsoHS8</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Siddiqui, Shoaib Ahmed</creator><creator>Malik, Muhammad Imran</creator><creator>Agne, Stefan</creator><creator>Dengel, Andreas</creator><creator>Ahmed, Sheraz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4600-7331</orcidid><orcidid>https://orcid.org/0000-0002-4239-6520</orcidid></search><sort><creationdate>2018</creationdate><title>DeCNT: Deep Deformable CNN for Table Detection</title><author>Siddiqui, Shoaib Ahmed ; Malik, Muhammad Imran ; Agne, Stefan ; Dengel, Andreas ; Ahmed, Sheraz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7161a96a88668d7677fe0731aecd02503df01d9b15e6fe0a60237b6883e0f41d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>convolutional neural networks</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>deformable convolution</topic><topic>Deformation</topic><topic>faster R-CNN</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>FPN</topic><topic>Hidden Markov models</topic><topic>Layout</topic><topic>Layouts</topic><topic>object detection</topic><topic>representation learning</topic><topic>table detection</topic><topic>table spotting</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqui, Shoaib Ahmed</creatorcontrib><creatorcontrib>Malik, Muhammad Imran</creatorcontrib><creatorcontrib>Agne, Stefan</creatorcontrib><creatorcontrib>Dengel, Andreas</creatorcontrib><creatorcontrib>Ahmed, Sheraz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddiqui, Shoaib Ahmed</au><au>Malik, Muhammad Imran</au><au>Agne, Stefan</au><au>Dengel, Andreas</au><au>Ahmed, Sheraz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeCNT: Deep Deformable CNN for Table Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>74151</spage><epage>74161</epage><pages>74151-74161</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a novel approach for the detection of tables present in documents, leveraging the potential of deep neural networks. Conventional approaches for table detection rely on heuristics that are error prone and specific to a dataset. In contrast, the presented approach harvests the potential of data to recognize tables of arbitrary layout. Most of the prior approaches for table detection are only applicable to PDFs, whereas, the presented approach directly works on images making it generally applicable to any format. The presented approach is based on a novel combination of deformable CNN with faster R-CNN/FPN. Conventional CNN has a fixed receptive field which is problematic for table detection since tables can be present at arbitrary scales along with arbitrary transformations (orientation). Deformable convolution conditions its receptive field on the input itself allowing it to mold its receptive field according to its input. This adaptation of the receptive field enables the network to cater for tables of arbitrary layout. We evaluated the proposed approach on two major publicly available table detection datasets: ICDAR-2013 and ICDAR-2017 POD. The presented approach was able to surpass the state-of-the-art performance on both ICDAR-2013 and ICDAR-2017 POD datasets with a F-measure of 0.994 and 0.968, respectively, indicating its effectiveness and superiority for the task of table detection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2880211</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4600-7331</orcidid><orcidid>https://orcid.org/0000-0002-4239-6520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018, Vol.6, p.74151-74161
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455916118
source IEEE Open Access Journals
subjects Artificial neural networks
Convolution
convolutional neural networks
Data mining
Datasets
Deep learning
deformable convolution
Deformation
faster R-CNN
Feature extraction
Formability
FPN
Hidden Markov models
Layout
Layouts
object detection
representation learning
table detection
table spotting
Task analysis
title DeCNT: Deep Deformable CNN for Table Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeCNT:%20Deep%20Deformable%20CNN%20for%20Table%20Detection&rft.jtitle=IEEE%20access&rft.au=Siddiqui,%20Shoaib%20Ahmed&rft.date=2018&rft.volume=6&rft.spage=74151&rft.epage=74161&rft.pages=74151-74161&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2880211&rft_dat=%3Cproquest_doaj_%3E2455916118%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7161a96a88668d7677fe0731aecd02503df01d9b15e6fe0a60237b6883e0f41d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455916118&rft_id=info:pmid/&rft_ieee_id=8540832&rfr_iscdi=true