Loading…
Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation
Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultra...
Saved in:
Published in: | IEEE access 2018-01, Vol.6, p.14188-14203 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353 |
container_end_page | 14203 |
container_issue | |
container_start_page | 14188 |
container_title | IEEE access |
container_volume | 6 |
creator | Diamantis, Konstantinos Dermitzakis, Aris Hopgood, James R. Sboros, Vassilis |
description | Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultrasound non-linearly. To date the signal processing research has successfully subtracted signals from the linear response of tissue (linear signals), but, in general, has not provided a sensitive detection that is specific to the UCA signal. This paper develops a method for the temporal and spectral estimation of linear and non-linear ultrasound echo signals. This technique is based on non-parametric methods for coarse estimation, followed by a parametric method within a Bayesian framework for estimation refinement. The results show that the pulse location can be estimated to within ±3 sample points accuracy for signals consisting of ≈ 80 sample points depending on the signal type, while the frequency content can be estimated to within 0.050 MHz deviations for frequencies in the 1 to 4 MHz range. This parametric spectral estimation achieved a 5-fold improvement in the frequency resolution compared with Fourier-based methods, and revealed previously unresolved frequency information that led to over 80% correct signal classification for linear and non-linear echo signals. |
doi_str_mv | 10.1109/ACCESS.2018.2807807 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455930378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8295037</ieee_id><doaj_id>oai_doaj_org_article_f4b7feba9d404a0e802a790d6b9cc263</doaj_id><sourcerecordid>2455930378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKWFhjS_IC-CPvsqS9bXYziubeCgJe7RRyFLq0SHz7pKcqH59VXiECIEu4xmZldM01x3eNN1WH252W53w7AhuJMbIrGo911zQTquWsoof_-m_9hc5XzE9cgKMXHRnIblDKm9gxynv-DQYSrJ5LjMDu3sQ0TDGWxF0O9QHtAQTstUzAxxyWgfrZnCoykhzuiQw3yPfppkTlBSsGgo9SGXUDloV-vpmfep-eDNlOHqpV42h6-7X9vv7f7Ht9vtzb61PZaldT0lPe8MxwykZM53UvnRAhCunLdU9M4Qyjs-wiiUtECZ5MwLJYw3on70srldfV00R31OdXz6p6MJ-hmI6V6bVJebQPt-FB5Go1yPe4NBYmKEwo6PylrCafX6vHqdU_yzQC76GJc01_U16RlTFFMhK4uuLJtizgn869QO66eY9BqTfopJv8RUVderKgDAq0ISxaop_Q9TNpAr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455930378</pqid></control><display><type>article</type><title>Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation</title><source>IEEE Xplore Open Access Journals</source><creator>Diamantis, Konstantinos ; Dermitzakis, Aris ; Hopgood, James R. ; Sboros, Vassilis</creator><creatorcontrib>Diamantis, Konstantinos ; Dermitzakis, Aris ; Hopgood, James R. ; Sboros, Vassilis</creatorcontrib><description>Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultrasound non-linearly. To date the signal processing research has successfully subtracted signals from the linear response of tissue (linear signals), but, in general, has not provided a sensitive detection that is specific to the UCA signal. This paper develops a method for the temporal and spectral estimation of linear and non-linear ultrasound echo signals. This technique is based on non-parametric methods for coarse estimation, followed by a parametric method within a Bayesian framework for estimation refinement. The results show that the pulse location can be estimated to within ±3 sample points accuracy for signals consisting of ≈ 80 sample points depending on the signal type, while the frequency content can be estimated to within 0.050 MHz deviations for frequencies in the 1 to 4 MHz range. This parametric spectral estimation achieved a 5-fold improvement in the frequency resolution compared with Fourier-based methods, and revealed previously unresolved frequency information that led to over 80% correct signal classification for linear and non-linear echo signals.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2807807</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayesian inference ; Contrast agents ; Estimation ; Frequency estimation ; Imaging ; Markov chain Monte Carlo ; medical ultrasound ; microbubbles ; Signal classification ; Signal processing ; Signal resolution ; Spectra ; Transducers ; Ultrasonic imaging ; Ultrasonic testing ; Ultrasonic variables measurement ; Ultrasound ; ultrasound contrast imaging</subject><ispartof>IEEE access, 2018-01, Vol.6, p.14188-14203</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353</citedby><cites>FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353</cites><orcidid>0000-0002-4320-1262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8295037$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27609,27900,27901,54907</link.rule.ids></links><search><creatorcontrib>Diamantis, Konstantinos</creatorcontrib><creatorcontrib>Dermitzakis, Aris</creatorcontrib><creatorcontrib>Hopgood, James R.</creatorcontrib><creatorcontrib>Sboros, Vassilis</creatorcontrib><title>Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultrasound non-linearly. To date the signal processing research has successfully subtracted signals from the linear response of tissue (linear signals), but, in general, has not provided a sensitive detection that is specific to the UCA signal. This paper develops a method for the temporal and spectral estimation of linear and non-linear ultrasound echo signals. This technique is based on non-parametric methods for coarse estimation, followed by a parametric method within a Bayesian framework for estimation refinement. The results show that the pulse location can be estimated to within ±3 sample points accuracy for signals consisting of ≈ 80 sample points depending on the signal type, while the frequency content can be estimated to within 0.050 MHz deviations for frequencies in the 1 to 4 MHz range. This parametric spectral estimation achieved a 5-fold improvement in the frequency resolution compared with Fourier-based methods, and revealed previously unresolved frequency information that led to over 80% correct signal classification for linear and non-linear echo signals.</description><subject>Bayesian inference</subject><subject>Contrast agents</subject><subject>Estimation</subject><subject>Frequency estimation</subject><subject>Imaging</subject><subject>Markov chain Monte Carlo</subject><subject>medical ultrasound</subject><subject>microbubbles</subject><subject>Signal classification</subject><subject>Signal processing</subject><subject>Signal resolution</subject><subject>Spectra</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><subject>Ultrasonic variables measurement</subject><subject>Ultrasound</subject><subject>ultrasound contrast imaging</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKWFhjS_IC-CPvsqS9bXYziubeCgJe7RRyFLq0SHz7pKcqH59VXiECIEu4xmZldM01x3eNN1WH252W53w7AhuJMbIrGo911zQTquWsoof_-m_9hc5XzE9cgKMXHRnIblDKm9gxynv-DQYSrJ5LjMDu3sQ0TDGWxF0O9QHtAQTstUzAxxyWgfrZnCoykhzuiQw3yPfppkTlBSsGgo9SGXUDloV-vpmfep-eDNlOHqpV42h6-7X9vv7f7Ht9vtzb61PZaldT0lPe8MxwykZM53UvnRAhCunLdU9M4Qyjs-wiiUtECZ5MwLJYw3on70srldfV00R31OdXz6p6MJ-hmI6V6bVJebQPt-FB5Go1yPe4NBYmKEwo6PylrCafX6vHqdU_yzQC76GJc01_U16RlTFFMhK4uuLJtizgn869QO66eY9BqTfopJv8RUVderKgDAq0ISxaop_Q9TNpAr</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Diamantis, Konstantinos</creator><creator>Dermitzakis, Aris</creator><creator>Hopgood, James R.</creator><creator>Sboros, Vassilis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4320-1262</orcidid></search><sort><creationdate>20180101</creationdate><title>Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation</title><author>Diamantis, Konstantinos ; Dermitzakis, Aris ; Hopgood, James R. ; Sboros, Vassilis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian inference</topic><topic>Contrast agents</topic><topic>Estimation</topic><topic>Frequency estimation</topic><topic>Imaging</topic><topic>Markov chain Monte Carlo</topic><topic>medical ultrasound</topic><topic>microbubbles</topic><topic>Signal classification</topic><topic>Signal processing</topic><topic>Signal resolution</topic><topic>Spectra</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><topic>Ultrasonic variables measurement</topic><topic>Ultrasound</topic><topic>ultrasound contrast imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diamantis, Konstantinos</creatorcontrib><creatorcontrib>Dermitzakis, Aris</creatorcontrib><creatorcontrib>Hopgood, James R.</creatorcontrib><creatorcontrib>Sboros, Vassilis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diamantis, Konstantinos</au><au>Dermitzakis, Aris</au><au>Hopgood, James R.</au><au>Sboros, Vassilis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>14188</spage><epage>14203</epage><pages>14188-14203</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultrasound non-linearly. To date the signal processing research has successfully subtracted signals from the linear response of tissue (linear signals), but, in general, has not provided a sensitive detection that is specific to the UCA signal. This paper develops a method for the temporal and spectral estimation of linear and non-linear ultrasound echo signals. This technique is based on non-parametric methods for coarse estimation, followed by a parametric method within a Bayesian framework for estimation refinement. The results show that the pulse location can be estimated to within ±3 sample points accuracy for signals consisting of ≈ 80 sample points depending on the signal type, while the frequency content can be estimated to within 0.050 MHz deviations for frequencies in the 1 to 4 MHz range. This parametric spectral estimation achieved a 5-fold improvement in the frequency resolution compared with Fourier-based methods, and revealed previously unresolved frequency information that led to over 80% correct signal classification for linear and non-linear echo signals.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2807807</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4320-1262</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.14188-14203 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455930378 |
source | IEEE Xplore Open Access Journals |
subjects | Bayesian inference Contrast agents Estimation Frequency estimation Imaging Markov chain Monte Carlo medical ultrasound microbubbles Signal classification Signal processing Signal resolution Spectra Transducers Ultrasonic imaging Ultrasonic testing Ultrasonic variables measurement Ultrasound ultrasound contrast imaging |
title | Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T20%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-Resolved%20Ultrasound%20Echo%20Spectra%20With%20Simultaneous%20Localization%20Using%20Parametric%20Statistical%20Estimation&rft.jtitle=IEEE%20access&rft.au=Diamantis,%20Konstantinos&rft.date=2018-01-01&rft.volume=6&rft.spage=14188&rft.epage=14203&rft.pages=14188-14203&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2807807&rft_dat=%3Cproquest_cross%3E2455930378%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455930378&rft_id=info:pmid/&rft_ieee_id=8295037&rfr_iscdi=true |