Loading…

Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation

Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018-01, Vol.6, p.14188-14203
Main Authors: Diamantis, Konstantinos, Dermitzakis, Aris, Hopgood, James R., Sboros, Vassilis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353
cites cdi_FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353
container_end_page 14203
container_issue
container_start_page 14188
container_title IEEE access
container_volume 6
creator Diamantis, Konstantinos
Dermitzakis, Aris
Hopgood, James R.
Sboros, Vassilis
description Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultrasound non-linearly. To date the signal processing research has successfully subtracted signals from the linear response of tissue (linear signals), but, in general, has not provided a sensitive detection that is specific to the UCA signal. This paper develops a method for the temporal and spectral estimation of linear and non-linear ultrasound echo signals. This technique is based on non-parametric methods for coarse estimation, followed by a parametric method within a Bayesian framework for estimation refinement. The results show that the pulse location can be estimated to within ±3 sample points accuracy for signals consisting of ≈ 80 sample points depending on the signal type, while the frequency content can be estimated to within 0.050 MHz deviations for frequencies in the 1 to 4 MHz range. This parametric spectral estimation achieved a 5-fold improvement in the frequency resolution compared with Fourier-based methods, and revealed previously unresolved frequency information that led to over 80% correct signal classification for linear and non-linear echo signals.
doi_str_mv 10.1109/ACCESS.2018.2807807
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455930378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8295037</ieee_id><doaj_id>oai_doaj_org_article_f4b7feba9d404a0e802a790d6b9cc263</doaj_id><sourcerecordid>2455930378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKWFhjS_IC-CPvsqS9bXYziubeCgJe7RRyFLq0SHz7pKcqH59VXiECIEu4xmZldM01x3eNN1WH252W53w7AhuJMbIrGo911zQTquWsoof_-m_9hc5XzE9cgKMXHRnIblDKm9gxynv-DQYSrJ5LjMDu3sQ0TDGWxF0O9QHtAQTstUzAxxyWgfrZnCoykhzuiQw3yPfppkTlBSsGgo9SGXUDloV-vpmfep-eDNlOHqpV42h6-7X9vv7f7Ht9vtzb61PZaldT0lPe8MxwykZM53UvnRAhCunLdU9M4Qyjs-wiiUtECZ5MwLJYw3on70srldfV00R31OdXz6p6MJ-hmI6V6bVJebQPt-FB5Go1yPe4NBYmKEwo6PylrCafX6vHqdU_yzQC76GJc01_U16RlTFFMhK4uuLJtizgn869QO66eY9BqTfopJv8RUVderKgDAq0ISxaop_Q9TNpAr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455930378</pqid></control><display><type>article</type><title>Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation</title><source>IEEE Xplore Open Access Journals</source><creator>Diamantis, Konstantinos ; Dermitzakis, Aris ; Hopgood, James R. ; Sboros, Vassilis</creator><creatorcontrib>Diamantis, Konstantinos ; Dermitzakis, Aris ; Hopgood, James R. ; Sboros, Vassilis</creatorcontrib><description>Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultrasound non-linearly. To date the signal processing research has successfully subtracted signals from the linear response of tissue (linear signals), but, in general, has not provided a sensitive detection that is specific to the UCA signal. This paper develops a method for the temporal and spectral estimation of linear and non-linear ultrasound echo signals. This technique is based on non-parametric methods for coarse estimation, followed by a parametric method within a Bayesian framework for estimation refinement. The results show that the pulse location can be estimated to within ±3 sample points accuracy for signals consisting of ≈ 80 sample points depending on the signal type, while the frequency content can be estimated to within 0.050 MHz deviations for frequencies in the 1 to 4 MHz range. This parametric spectral estimation achieved a 5-fold improvement in the frequency resolution compared with Fourier-based methods, and revealed previously unresolved frequency information that led to over 80% correct signal classification for linear and non-linear echo signals.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2807807</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayesian inference ; Contrast agents ; Estimation ; Frequency estimation ; Imaging ; Markov chain Monte Carlo ; medical ultrasound ; microbubbles ; Signal classification ; Signal processing ; Signal resolution ; Spectra ; Transducers ; Ultrasonic imaging ; Ultrasonic testing ; Ultrasonic variables measurement ; Ultrasound ; ultrasound contrast imaging</subject><ispartof>IEEE access, 2018-01, Vol.6, p.14188-14203</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353</citedby><cites>FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353</cites><orcidid>0000-0002-4320-1262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8295037$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27609,27900,27901,54907</link.rule.ids></links><search><creatorcontrib>Diamantis, Konstantinos</creatorcontrib><creatorcontrib>Dermitzakis, Aris</creatorcontrib><creatorcontrib>Hopgood, James R.</creatorcontrib><creatorcontrib>Sboros, Vassilis</creatorcontrib><title>Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultrasound non-linearly. To date the signal processing research has successfully subtracted signals from the linear response of tissue (linear signals), but, in general, has not provided a sensitive detection that is specific to the UCA signal. This paper develops a method for the temporal and spectral estimation of linear and non-linear ultrasound echo signals. This technique is based on non-parametric methods for coarse estimation, followed by a parametric method within a Bayesian framework for estimation refinement. The results show that the pulse location can be estimated to within ±3 sample points accuracy for signals consisting of ≈ 80 sample points depending on the signal type, while the frequency content can be estimated to within 0.050 MHz deviations for frequencies in the 1 to 4 MHz range. This parametric spectral estimation achieved a 5-fold improvement in the frequency resolution compared with Fourier-based methods, and revealed previously unresolved frequency information that led to over 80% correct signal classification for linear and non-linear echo signals.</description><subject>Bayesian inference</subject><subject>Contrast agents</subject><subject>Estimation</subject><subject>Frequency estimation</subject><subject>Imaging</subject><subject>Markov chain Monte Carlo</subject><subject>medical ultrasound</subject><subject>microbubbles</subject><subject>Signal classification</subject><subject>Signal processing</subject><subject>Signal resolution</subject><subject>Spectra</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><subject>Ultrasonic variables measurement</subject><subject>Ultrasound</subject><subject>ultrasound contrast imaging</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKWFhjS_IC-CPvsqS9bXYziubeCgJe7RRyFLq0SHz7pKcqH59VXiECIEu4xmZldM01x3eNN1WH252W53w7AhuJMbIrGo911zQTquWsoof_-m_9hc5XzE9cgKMXHRnIblDKm9gxynv-DQYSrJ5LjMDu3sQ0TDGWxF0O9QHtAQTstUzAxxyWgfrZnCoykhzuiQw3yPfppkTlBSsGgo9SGXUDloV-vpmfep-eDNlOHqpV42h6-7X9vv7f7Ht9vtzb61PZaldT0lPe8MxwykZM53UvnRAhCunLdU9M4Qyjs-wiiUtECZ5MwLJYw3on70srldfV00R31OdXz6p6MJ-hmI6V6bVJebQPt-FB5Go1yPe4NBYmKEwo6PylrCafX6vHqdU_yzQC76GJc01_U16RlTFFMhK4uuLJtizgn869QO66eY9BqTfopJv8RUVderKgDAq0ISxaop_Q9TNpAr</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Diamantis, Konstantinos</creator><creator>Dermitzakis, Aris</creator><creator>Hopgood, James R.</creator><creator>Sboros, Vassilis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4320-1262</orcidid></search><sort><creationdate>20180101</creationdate><title>Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation</title><author>Diamantis, Konstantinos ; Dermitzakis, Aris ; Hopgood, James R. ; Sboros, Vassilis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian inference</topic><topic>Contrast agents</topic><topic>Estimation</topic><topic>Frequency estimation</topic><topic>Imaging</topic><topic>Markov chain Monte Carlo</topic><topic>medical ultrasound</topic><topic>microbubbles</topic><topic>Signal classification</topic><topic>Signal processing</topic><topic>Signal resolution</topic><topic>Spectra</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><topic>Ultrasonic variables measurement</topic><topic>Ultrasound</topic><topic>ultrasound contrast imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diamantis, Konstantinos</creatorcontrib><creatorcontrib>Dermitzakis, Aris</creatorcontrib><creatorcontrib>Hopgood, James R.</creatorcontrib><creatorcontrib>Sboros, Vassilis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diamantis, Konstantinos</au><au>Dermitzakis, Aris</au><au>Hopgood, James R.</au><au>Sboros, Vassilis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>14188</spage><epage>14203</epage><pages>14188-14203</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultrasound non-linearly. To date the signal processing research has successfully subtracted signals from the linear response of tissue (linear signals), but, in general, has not provided a sensitive detection that is specific to the UCA signal. This paper develops a method for the temporal and spectral estimation of linear and non-linear ultrasound echo signals. This technique is based on non-parametric methods for coarse estimation, followed by a parametric method within a Bayesian framework for estimation refinement. The results show that the pulse location can be estimated to within ±3 sample points accuracy for signals consisting of ≈ 80 sample points depending on the signal type, while the frequency content can be estimated to within 0.050 MHz deviations for frequencies in the 1 to 4 MHz range. This parametric spectral estimation achieved a 5-fold improvement in the frequency resolution compared with Fourier-based methods, and revealed previously unresolved frequency information that led to over 80% correct signal classification for linear and non-linear echo signals.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2807807</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4320-1262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.14188-14203
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455930378
source IEEE Xplore Open Access Journals
subjects Bayesian inference
Contrast agents
Estimation
Frequency estimation
Imaging
Markov chain Monte Carlo
medical ultrasound
microbubbles
Signal classification
Signal processing
Signal resolution
Spectra
Transducers
Ultrasonic imaging
Ultrasonic testing
Ultrasonic variables measurement
Ultrasound
ultrasound contrast imaging
title Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T20%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-Resolved%20Ultrasound%20Echo%20Spectra%20With%20Simultaneous%20Localization%20Using%20Parametric%20Statistical%20Estimation&rft.jtitle=IEEE%20access&rft.au=Diamantis,%20Konstantinos&rft.date=2018-01-01&rft.volume=6&rft.spage=14188&rft.epage=14203&rft.pages=14188-14203&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2807807&rft_dat=%3Cproquest_cross%3E2455930378%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-d432461a605e885df189fbcee269dfc374da23616beb798ce35865f797afa7353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455930378&rft_id=info:pmid/&rft_ieee_id=8295037&rfr_iscdi=true