Loading…
Machine Learning With Big Data: Challenges and Approaches
The Big Data revolution promises to transform how we live, work, and think by enabling process optimization, empowering insight discovery and improving decision making. The realization of this grand potential relies on the ability to extract value from such massive data through data analytics; machi...
Saved in:
Published in: | IEEE access 2017, Vol.5, p.7776-7797 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Big Data revolution promises to transform how we live, work, and think by enabling process optimization, empowering insight discovery and improving decision making. The realization of this grand potential relies on the ability to extract value from such massive data through data analytics; machine learning is at its core because of its ability to learn from data and provide data driven insights, decisions, and predictions. However, traditional machine learning approaches were developed in a different era, and thus are based upon multiple assumptions, such as the data set fitting entirely into memory, what unfortunately no longer holds true in this new context. These broken assumptions, together with the Big Data characteristics, are creating obstacles for the traditional techniques. Consequently, this paper compiles, summarizes, and organizes machine learning challenges with Big Data. In contrast to other research that discusses challenges, this work highlights the cause-effect relationship by organizing challenges according to Big Data Vs or dimensions that instigated the issue: volume, velocity, variety, or veracity. Moreover, emerging machine learning approaches and techniques are discussed in terms of how they are capable of handling the various challenges with the ultimate objective of helping practitioners select appropriate solutions for their use cases. Finally, a matrix relating the challenges and approaches is presented. Through this process, this paper provides a perspective on the domain, identifies research gaps and opportunities, and provides a strong foundation and encouragement for further research in the field of machine learning with Big Data. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2017.2696365 |