Loading…

Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation

A new nonlinear robust control scheme is proposed and investigated for the trajectory tracking control problem of an underwater vehicle-manipulator system (UVMS) using the discrete time delay estimation (DTDE) technique. The proposed control scheme mainly has two parts: the DTDE part and the desired...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2017, Vol.5, p.7435-7443
Main Authors: Wang, Yaoyao, Jiang, Surong, Chen, Bai, Wu, Hongtao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903
cites cdi_FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903
container_end_page 7443
container_issue
container_start_page 7435
container_title IEEE access
container_volume 5
creator Wang, Yaoyao
Jiang, Surong
Chen, Bai
Wu, Hongtao
description A new nonlinear robust control scheme is proposed and investigated for the trajectory tracking control problem of an underwater vehicle-manipulator system (UVMS) using the discrete time delay estimation (DTDE) technique. The proposed control scheme mainly has two parts: the DTDE part and the desired dynamics part. The former one is applied to properly estimate and compensate the complex unknown lumped dynamics of the system, using the intentionally time-delayed system's information. The latter one is used to obtain the desired dynamic characteristic of the closed-loop control system. Thanks to the DTDE technique, the proposed control scheme no longer requires the detailed system dynamic information or the acceleration signals, bringing in good feasibility for actual applications and satisfactory control performance. The stability of the closed-loop control system is analyzed and proved using the bounded input bounded out stability theory. Finally, nine degree of freedoms (DOFs) simulation and seven DOFs pool experiment studies were conducted to demonstrate the effectiveness of the proposed control scheme with an UVMS developed in our laboratory. Corresponding results show that our proposed control scheme can ensure satisfactory control performance with relative small control gains and obtain a precision of 0.064 m for the end effector in the task space.
doi_str_mv 10.1109/ACCESS.2017.2701350
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455943138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7919170</ieee_id><doaj_id>oai_doaj_org_article_efb0734b56b3492db06d60bc8cdcca77</doaj_id><sourcerecordid>2455943138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903</originalsourceid><addsrcrecordid>eNpNkUFP4zAQhaMVKy0CfgEXS5xTxrEdx0cUCovEag9t92o5zoR1SeNiu0L99-tuEMIXP43me8_WK4prCgtKQd3ete1ytVpUQOWikkCZgG_FeUVrVTLB6rMv-kdxFeMW8mnySMjzwq2D2aJNPhxJlvbVTS-k9VMKfiR-IJupx_BuEgbyB_86O2L5y0xufxhNZsjqGBPuyCaesHsXbcCEZO12SO5xNEeyjMntTHJ-uiy-D2aMePVxXxSbh-W6_Vk-_358au-eS8slT-VAK6g74GiNFB3L0gjBDe8tWmHtwKGToAwbLGBtlKK9NByhaWRdMaOAXRRPs2_vzVbvQ44PR-2N0_8HPrxoE9LpJxqHDiTjnag7xlXVd1D3NXS2sb3N8TJ73cxe--DfDhiT3vpDmPLzdcWFUJxR1uQtNm_Z4GMMOHymUtCnivRckT5VpD8qytT1TDlE_CSkoopKYP8AFK2OPw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455943138</pqid></control><display><type>article</type><title>Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation</title><source>IEEE Xplore Open Access Journals</source><creator>Wang, Yaoyao ; Jiang, Surong ; Chen, Bai ; Wu, Hongtao</creator><creatorcontrib>Wang, Yaoyao ; Jiang, Surong ; Chen, Bai ; Wu, Hongtao</creatorcontrib><description>A new nonlinear robust control scheme is proposed and investigated for the trajectory tracking control problem of an underwater vehicle-manipulator system (UVMS) using the discrete time delay estimation (DTDE) technique. The proposed control scheme mainly has two parts: the DTDE part and the desired dynamics part. The former one is applied to properly estimate and compensate the complex unknown lumped dynamics of the system, using the intentionally time-delayed system's information. The latter one is used to obtain the desired dynamic characteristic of the closed-loop control system. Thanks to the DTDE technique, the proposed control scheme no longer requires the detailed system dynamic information or the acceleration signals, bringing in good feasibility for actual applications and satisfactory control performance. The stability of the closed-loop control system is analyzed and proved using the bounded input bounded out stability theory. Finally, nine degree of freedoms (DOFs) simulation and seven DOFs pool experiment studies were conducted to demonstrate the effectiveness of the proposed control scheme with an UVMS developed in our laboratory. Corresponding results show that our proposed control scheme can ensure satisfactory control performance with relative small control gains and obtain a precision of 0.064 m for the end effector in the task space.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2701350</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Control stability ; Control systems ; discrete time delay estimation ; Discrete time systems ; DTDE ; Dynamic characteristics ; End effectors ; Estimation ; Jacobian matrices ; Manipulators ; Nonlinear control ; Robot arms ; Robust control ; Stability analysis ; System dynamics ; Task space ; Time delay systems ; Tracking control ; Trajectory control ; Trajectory tracking control ; underwater vehicle-manipulator system ; Underwater vehicles ; UVMS ; Vehicle dynamics</subject><ispartof>IEEE access, 2017, Vol.5, p.7435-7443</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903</citedby><cites>FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903</cites><orcidid>0000-0001-5237-378X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7919170$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Yaoyao</creatorcontrib><creatorcontrib>Jiang, Surong</creatorcontrib><creatorcontrib>Chen, Bai</creatorcontrib><creatorcontrib>Wu, Hongtao</creatorcontrib><title>Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation</title><title>IEEE access</title><addtitle>Access</addtitle><description>A new nonlinear robust control scheme is proposed and investigated for the trajectory tracking control problem of an underwater vehicle-manipulator system (UVMS) using the discrete time delay estimation (DTDE) technique. The proposed control scheme mainly has two parts: the DTDE part and the desired dynamics part. The former one is applied to properly estimate and compensate the complex unknown lumped dynamics of the system, using the intentionally time-delayed system's information. The latter one is used to obtain the desired dynamic characteristic of the closed-loop control system. Thanks to the DTDE technique, the proposed control scheme no longer requires the detailed system dynamic information or the acceleration signals, bringing in good feasibility for actual applications and satisfactory control performance. The stability of the closed-loop control system is analyzed and proved using the bounded input bounded out stability theory. Finally, nine degree of freedoms (DOFs) simulation and seven DOFs pool experiment studies were conducted to demonstrate the effectiveness of the proposed control scheme with an UVMS developed in our laboratory. Corresponding results show that our proposed control scheme can ensure satisfactory control performance with relative small control gains and obtain a precision of 0.064 m for the end effector in the task space.</description><subject>Acceleration</subject><subject>Control stability</subject><subject>Control systems</subject><subject>discrete time delay estimation</subject><subject>Discrete time systems</subject><subject>DTDE</subject><subject>Dynamic characteristics</subject><subject>End effectors</subject><subject>Estimation</subject><subject>Jacobian matrices</subject><subject>Manipulators</subject><subject>Nonlinear control</subject><subject>Robot arms</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>System dynamics</subject><subject>Task space</subject><subject>Time delay systems</subject><subject>Tracking control</subject><subject>Trajectory control</subject><subject>Trajectory tracking control</subject><subject>underwater vehicle-manipulator system</subject><subject>Underwater vehicles</subject><subject>UVMS</subject><subject>Vehicle dynamics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFP4zAQhaMVKy0CfgEXS5xTxrEdx0cUCovEag9t92o5zoR1SeNiu0L99-tuEMIXP43me8_WK4prCgtKQd3ete1ytVpUQOWikkCZgG_FeUVrVTLB6rMv-kdxFeMW8mnySMjzwq2D2aJNPhxJlvbVTS-k9VMKfiR-IJupx_BuEgbyB_86O2L5y0xufxhNZsjqGBPuyCaesHsXbcCEZO12SO5xNEeyjMntTHJ-uiy-D2aMePVxXxSbh-W6_Vk-_358au-eS8slT-VAK6g74GiNFB3L0gjBDe8tWmHtwKGToAwbLGBtlKK9NByhaWRdMaOAXRRPs2_vzVbvQ44PR-2N0_8HPrxoE9LpJxqHDiTjnag7xlXVd1D3NXS2sb3N8TJ73cxe--DfDhiT3vpDmPLzdcWFUJxR1uQtNm_Z4GMMOHymUtCnivRckT5VpD8qytT1TDlE_CSkoopKYP8AFK2OPw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Wang, Yaoyao</creator><creator>Jiang, Surong</creator><creator>Chen, Bai</creator><creator>Wu, Hongtao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5237-378X</orcidid></search><sort><creationdate>2017</creationdate><title>Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation</title><author>Wang, Yaoyao ; Jiang, Surong ; Chen, Bai ; Wu, Hongtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Control stability</topic><topic>Control systems</topic><topic>discrete time delay estimation</topic><topic>Discrete time systems</topic><topic>DTDE</topic><topic>Dynamic characteristics</topic><topic>End effectors</topic><topic>Estimation</topic><topic>Jacobian matrices</topic><topic>Manipulators</topic><topic>Nonlinear control</topic><topic>Robot arms</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>System dynamics</topic><topic>Task space</topic><topic>Time delay systems</topic><topic>Tracking control</topic><topic>Trajectory control</topic><topic>Trajectory tracking control</topic><topic>underwater vehicle-manipulator system</topic><topic>Underwater vehicles</topic><topic>UVMS</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yaoyao</creatorcontrib><creatorcontrib>Jiang, Surong</creatorcontrib><creatorcontrib>Chen, Bai</creatorcontrib><creatorcontrib>Wu, Hongtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yaoyao</au><au>Jiang, Surong</au><au>Chen, Bai</au><au>Wu, Hongtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017</date><risdate>2017</risdate><volume>5</volume><spage>7435</spage><epage>7443</epage><pages>7435-7443</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A new nonlinear robust control scheme is proposed and investigated for the trajectory tracking control problem of an underwater vehicle-manipulator system (UVMS) using the discrete time delay estimation (DTDE) technique. The proposed control scheme mainly has two parts: the DTDE part and the desired dynamics part. The former one is applied to properly estimate and compensate the complex unknown lumped dynamics of the system, using the intentionally time-delayed system's information. The latter one is used to obtain the desired dynamic characteristic of the closed-loop control system. Thanks to the DTDE technique, the proposed control scheme no longer requires the detailed system dynamic information or the acceleration signals, bringing in good feasibility for actual applications and satisfactory control performance. The stability of the closed-loop control system is analyzed and proved using the bounded input bounded out stability theory. Finally, nine degree of freedoms (DOFs) simulation and seven DOFs pool experiment studies were conducted to demonstrate the effectiveness of the proposed control scheme with an UVMS developed in our laboratory. Corresponding results show that our proposed control scheme can ensure satisfactory control performance with relative small control gains and obtain a precision of 0.064 m for the end effector in the task space.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2701350</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5237-378X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2017, Vol.5, p.7435-7443
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455943138
source IEEE Xplore Open Access Journals
subjects Acceleration
Control stability
Control systems
discrete time delay estimation
Discrete time systems
DTDE
Dynamic characteristics
End effectors
Estimation
Jacobian matrices
Manipulators
Nonlinear control
Robot arms
Robust control
Stability analysis
System dynamics
Task space
Time delay systems
Tracking control
Trajectory control
Trajectory tracking control
underwater vehicle-manipulator system
Underwater vehicles
UVMS
Vehicle dynamics
title Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20Tracking%20Control%20of%20Underwater%20Vehicle-Manipulator%20System%20Using%20Discrete%20Time%20Delay%20Estimation&rft.jtitle=IEEE%20access&rft.au=Wang,%20Yaoyao&rft.date=2017&rft.volume=5&rft.spage=7435&rft.epage=7443&rft.pages=7435-7443&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2701350&rft_dat=%3Cproquest_cross%3E2455943138%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455943138&rft_id=info:pmid/&rft_ieee_id=7919170&rfr_iscdi=true