Loading…
Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation
A new nonlinear robust control scheme is proposed and investigated for the trajectory tracking control problem of an underwater vehicle-manipulator system (UVMS) using the discrete time delay estimation (DTDE) technique. The proposed control scheme mainly has two parts: the DTDE part and the desired...
Saved in:
Published in: | IEEE access 2017, Vol.5, p.7435-7443 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903 |
container_end_page | 7443 |
container_issue | |
container_start_page | 7435 |
container_title | IEEE access |
container_volume | 5 |
creator | Wang, Yaoyao Jiang, Surong Chen, Bai Wu, Hongtao |
description | A new nonlinear robust control scheme is proposed and investigated for the trajectory tracking control problem of an underwater vehicle-manipulator system (UVMS) using the discrete time delay estimation (DTDE) technique. The proposed control scheme mainly has two parts: the DTDE part and the desired dynamics part. The former one is applied to properly estimate and compensate the complex unknown lumped dynamics of the system, using the intentionally time-delayed system's information. The latter one is used to obtain the desired dynamic characteristic of the closed-loop control system. Thanks to the DTDE technique, the proposed control scheme no longer requires the detailed system dynamic information or the acceleration signals, bringing in good feasibility for actual applications and satisfactory control performance. The stability of the closed-loop control system is analyzed and proved using the bounded input bounded out stability theory. Finally, nine degree of freedoms (DOFs) simulation and seven DOFs pool experiment studies were conducted to demonstrate the effectiveness of the proposed control scheme with an UVMS developed in our laboratory. Corresponding results show that our proposed control scheme can ensure satisfactory control performance with relative small control gains and obtain a precision of 0.064 m for the end effector in the task space. |
doi_str_mv | 10.1109/ACCESS.2017.2701350 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455943138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7919170</ieee_id><doaj_id>oai_doaj_org_article_efb0734b56b3492db06d60bc8cdcca77</doaj_id><sourcerecordid>2455943138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903</originalsourceid><addsrcrecordid>eNpNkUFP4zAQhaMVKy0CfgEXS5xTxrEdx0cUCovEag9t92o5zoR1SeNiu0L99-tuEMIXP43me8_WK4prCgtKQd3ete1ytVpUQOWikkCZgG_FeUVrVTLB6rMv-kdxFeMW8mnySMjzwq2D2aJNPhxJlvbVTS-k9VMKfiR-IJupx_BuEgbyB_86O2L5y0xufxhNZsjqGBPuyCaesHsXbcCEZO12SO5xNEeyjMntTHJ-uiy-D2aMePVxXxSbh-W6_Vk-_358au-eS8slT-VAK6g74GiNFB3L0gjBDe8tWmHtwKGToAwbLGBtlKK9NByhaWRdMaOAXRRPs2_vzVbvQ44PR-2N0_8HPrxoE9LpJxqHDiTjnag7xlXVd1D3NXS2sb3N8TJ73cxe--DfDhiT3vpDmPLzdcWFUJxR1uQtNm_Z4GMMOHymUtCnivRckT5VpD8qytT1TDlE_CSkoopKYP8AFK2OPw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455943138</pqid></control><display><type>article</type><title>Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation</title><source>IEEE Xplore Open Access Journals</source><creator>Wang, Yaoyao ; Jiang, Surong ; Chen, Bai ; Wu, Hongtao</creator><creatorcontrib>Wang, Yaoyao ; Jiang, Surong ; Chen, Bai ; Wu, Hongtao</creatorcontrib><description>A new nonlinear robust control scheme is proposed and investigated for the trajectory tracking control problem of an underwater vehicle-manipulator system (UVMS) using the discrete time delay estimation (DTDE) technique. The proposed control scheme mainly has two parts: the DTDE part and the desired dynamics part. The former one is applied to properly estimate and compensate the complex unknown lumped dynamics of the system, using the intentionally time-delayed system's information. The latter one is used to obtain the desired dynamic characteristic of the closed-loop control system. Thanks to the DTDE technique, the proposed control scheme no longer requires the detailed system dynamic information or the acceleration signals, bringing in good feasibility for actual applications and satisfactory control performance. The stability of the closed-loop control system is analyzed and proved using the bounded input bounded out stability theory. Finally, nine degree of freedoms (DOFs) simulation and seven DOFs pool experiment studies were conducted to demonstrate the effectiveness of the proposed control scheme with an UVMS developed in our laboratory. Corresponding results show that our proposed control scheme can ensure satisfactory control performance with relative small control gains and obtain a precision of 0.064 m for the end effector in the task space.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2701350</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Control stability ; Control systems ; discrete time delay estimation ; Discrete time systems ; DTDE ; Dynamic characteristics ; End effectors ; Estimation ; Jacobian matrices ; Manipulators ; Nonlinear control ; Robot arms ; Robust control ; Stability analysis ; System dynamics ; Task space ; Time delay systems ; Tracking control ; Trajectory control ; Trajectory tracking control ; underwater vehicle-manipulator system ; Underwater vehicles ; UVMS ; Vehicle dynamics</subject><ispartof>IEEE access, 2017, Vol.5, p.7435-7443</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903</citedby><cites>FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903</cites><orcidid>0000-0001-5237-378X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7919170$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Yaoyao</creatorcontrib><creatorcontrib>Jiang, Surong</creatorcontrib><creatorcontrib>Chen, Bai</creatorcontrib><creatorcontrib>Wu, Hongtao</creatorcontrib><title>Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation</title><title>IEEE access</title><addtitle>Access</addtitle><description>A new nonlinear robust control scheme is proposed and investigated for the trajectory tracking control problem of an underwater vehicle-manipulator system (UVMS) using the discrete time delay estimation (DTDE) technique. The proposed control scheme mainly has two parts: the DTDE part and the desired dynamics part. The former one is applied to properly estimate and compensate the complex unknown lumped dynamics of the system, using the intentionally time-delayed system's information. The latter one is used to obtain the desired dynamic characteristic of the closed-loop control system. Thanks to the DTDE technique, the proposed control scheme no longer requires the detailed system dynamic information or the acceleration signals, bringing in good feasibility for actual applications and satisfactory control performance. The stability of the closed-loop control system is analyzed and proved using the bounded input bounded out stability theory. Finally, nine degree of freedoms (DOFs) simulation and seven DOFs pool experiment studies were conducted to demonstrate the effectiveness of the proposed control scheme with an UVMS developed in our laboratory. Corresponding results show that our proposed control scheme can ensure satisfactory control performance with relative small control gains and obtain a precision of 0.064 m for the end effector in the task space.</description><subject>Acceleration</subject><subject>Control stability</subject><subject>Control systems</subject><subject>discrete time delay estimation</subject><subject>Discrete time systems</subject><subject>DTDE</subject><subject>Dynamic characteristics</subject><subject>End effectors</subject><subject>Estimation</subject><subject>Jacobian matrices</subject><subject>Manipulators</subject><subject>Nonlinear control</subject><subject>Robot arms</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>System dynamics</subject><subject>Task space</subject><subject>Time delay systems</subject><subject>Tracking control</subject><subject>Trajectory control</subject><subject>Trajectory tracking control</subject><subject>underwater vehicle-manipulator system</subject><subject>Underwater vehicles</subject><subject>UVMS</subject><subject>Vehicle dynamics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFP4zAQhaMVKy0CfgEXS5xTxrEdx0cUCovEag9t92o5zoR1SeNiu0L99-tuEMIXP43me8_WK4prCgtKQd3ete1ytVpUQOWikkCZgG_FeUVrVTLB6rMv-kdxFeMW8mnySMjzwq2D2aJNPhxJlvbVTS-k9VMKfiR-IJupx_BuEgbyB_86O2L5y0xufxhNZsjqGBPuyCaesHsXbcCEZO12SO5xNEeyjMntTHJ-uiy-D2aMePVxXxSbh-W6_Vk-_358au-eS8slT-VAK6g74GiNFB3L0gjBDe8tWmHtwKGToAwbLGBtlKK9NByhaWRdMaOAXRRPs2_vzVbvQ44PR-2N0_8HPrxoE9LpJxqHDiTjnag7xlXVd1D3NXS2sb3N8TJ73cxe--DfDhiT3vpDmPLzdcWFUJxR1uQtNm_Z4GMMOHymUtCnivRckT5VpD8qytT1TDlE_CSkoopKYP8AFK2OPw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Wang, Yaoyao</creator><creator>Jiang, Surong</creator><creator>Chen, Bai</creator><creator>Wu, Hongtao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5237-378X</orcidid></search><sort><creationdate>2017</creationdate><title>Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation</title><author>Wang, Yaoyao ; Jiang, Surong ; Chen, Bai ; Wu, Hongtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Control stability</topic><topic>Control systems</topic><topic>discrete time delay estimation</topic><topic>Discrete time systems</topic><topic>DTDE</topic><topic>Dynamic characteristics</topic><topic>End effectors</topic><topic>Estimation</topic><topic>Jacobian matrices</topic><topic>Manipulators</topic><topic>Nonlinear control</topic><topic>Robot arms</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>System dynamics</topic><topic>Task space</topic><topic>Time delay systems</topic><topic>Tracking control</topic><topic>Trajectory control</topic><topic>Trajectory tracking control</topic><topic>underwater vehicle-manipulator system</topic><topic>Underwater vehicles</topic><topic>UVMS</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yaoyao</creatorcontrib><creatorcontrib>Jiang, Surong</creatorcontrib><creatorcontrib>Chen, Bai</creatorcontrib><creatorcontrib>Wu, Hongtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yaoyao</au><au>Jiang, Surong</au><au>Chen, Bai</au><au>Wu, Hongtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017</date><risdate>2017</risdate><volume>5</volume><spage>7435</spage><epage>7443</epage><pages>7435-7443</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A new nonlinear robust control scheme is proposed and investigated for the trajectory tracking control problem of an underwater vehicle-manipulator system (UVMS) using the discrete time delay estimation (DTDE) technique. The proposed control scheme mainly has two parts: the DTDE part and the desired dynamics part. The former one is applied to properly estimate and compensate the complex unknown lumped dynamics of the system, using the intentionally time-delayed system's information. The latter one is used to obtain the desired dynamic characteristic of the closed-loop control system. Thanks to the DTDE technique, the proposed control scheme no longer requires the detailed system dynamic information or the acceleration signals, bringing in good feasibility for actual applications and satisfactory control performance. The stability of the closed-loop control system is analyzed and proved using the bounded input bounded out stability theory. Finally, nine degree of freedoms (DOFs) simulation and seven DOFs pool experiment studies were conducted to demonstrate the effectiveness of the proposed control scheme with an UVMS developed in our laboratory. Corresponding results show that our proposed control scheme can ensure satisfactory control performance with relative small control gains and obtain a precision of 0.064 m for the end effector in the task space.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2701350</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5237-378X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2017, Vol.5, p.7435-7443 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455943138 |
source | IEEE Xplore Open Access Journals |
subjects | Acceleration Control stability Control systems discrete time delay estimation Discrete time systems DTDE Dynamic characteristics End effectors Estimation Jacobian matrices Manipulators Nonlinear control Robot arms Robust control Stability analysis System dynamics Task space Time delay systems Tracking control Trajectory control Trajectory tracking control underwater vehicle-manipulator system Underwater vehicles UVMS Vehicle dynamics |
title | Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20Tracking%20Control%20of%20Underwater%20Vehicle-Manipulator%20System%20Using%20Discrete%20Time%20Delay%20Estimation&rft.jtitle=IEEE%20access&rft.au=Wang,%20Yaoyao&rft.date=2017&rft.volume=5&rft.spage=7435&rft.epage=7443&rft.pages=7435-7443&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2701350&rft_dat=%3Cproquest_cross%3E2455943138%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-f1206b04eca75b36b0a554a4dcec5ccf40b709a3fc0e6a991d7a4e0887623a903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455943138&rft_id=info:pmid/&rft_ieee_id=7919170&rfr_iscdi=true |