Loading…
Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance
Industry 4.0 can make a factory smart by applying intelligent information processing approaches, communication systems, future-oriented techniques, and more. However, the high complexity, automation, and flexibility of an intelligent factory bring new challenges to reliability and safety. Industrial...
Saved in:
Published in: | IEEE access 2017-01, Vol.5, p.23484-23491 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03 |
container_end_page | 23491 |
container_issue | |
container_start_page | 23484 |
container_title | IEEE access |
container_volume | 5 |
creator | Yan, Jihong Meng, Yue Lu, Lei Li, Lin |
description | Industry 4.0 can make a factory smart by applying intelligent information processing approaches, communication systems, future-oriented techniques, and more. However, the high complexity, automation, and flexibility of an intelligent factory bring new challenges to reliability and safety. Industrial big data generated by multisource sensors, intercommunication within the system and external-related information, and so on, might provide new solutions for predictive maintenance to improve system reliability. This paper puts forth attributes of industrial big data processing and actively explores industrial big data processing-based predictive maintenance. A novel framework is proposed for structuring multisource heterogeneous information, characterizing structured data with consideration of the spatiotemporal property, and modeling invisible factors, which would make the production process transparent and eventually implement predictive maintenance on facilities and energy saving in the industry 4.0 era. The effectiveness of the proposed scheme was verified by analyzing multisource heterogeneous industrial data for the remaining life prediction of key components of machining equipment. |
doi_str_mv | 10.1109/ACCESS.2017.2765544 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455944904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8085101</ieee_id><doaj_id>oai_doaj_org_article_d5d9162ca8964e73882288094d66bdfd</doaj_id><sourcerecordid>2455944904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03</originalsourceid><addsrcrecordid>eNpNUcFqGzEQXUoLDUm-IBdBr7UraSWttjd36zSGlAacnsVYGjkya8nVyoH8fddZEzIMzGNm3puBV1U3jM4Zo-23Rdct1-s5p6yZ80ZJKcSH6oIz1c5qWauP7_Dn6noYdnQMPbZkc1GVVXTHoeQAPfkRtuQnFCAhEojkPHkhYk7JMj6HnOIeY_lOuifoe4xbHL6StX3C_QlAdGRxOPTBQgkpDsSnTB4yumBLeEbyG0IsGCFavKo-eegHvD7Xy-rv7fKxu5vd__m16hb3MyukLjPLRausRFQCmG8AwWnWSiupQKZFLdWYTa2plZ4DpV4wKdyGK1R-4x2tL6vVpOsS7Mwhhz3kF5MgmNdGylsDuQTbo3HStUxxC7pVAkdRzbnWtBVOqY3zbtT6Mmkdcvp3xKGYXTrmOL5vuJCyFaKlYtyqpy2b0zBk9G9XGTUnt8zkljm5Zc5ujaybiRUQ8Y2hqZaMsvo_37iPcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455944904</pqid></control><display><type>article</type><title>Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance</title><source>IEEE Open Access Journals</source><creator>Yan, Jihong ; Meng, Yue ; Lu, Lei ; Li, Lin</creator><creatorcontrib>Yan, Jihong ; Meng, Yue ; Lu, Lei ; Li, Lin</creatorcontrib><description>Industry 4.0 can make a factory smart by applying intelligent information processing approaches, communication systems, future-oriented techniques, and more. However, the high complexity, automation, and flexibility of an intelligent factory bring new challenges to reliability and safety. Industrial big data generated by multisource sensors, intercommunication within the system and external-related information, and so on, might provide new solutions for predictive maintenance to improve system reliability. This paper puts forth attributes of industrial big data processing and actively explores industrial big data processing-based predictive maintenance. A novel framework is proposed for structuring multisource heterogeneous information, characterizing structured data with consideration of the spatiotemporal property, and modeling invisible factors, which would make the production process transparent and eventually implement predictive maintenance on facilities and energy saving in the industry 4.0 era. The effectiveness of the proposed scheme was verified by analyzing multisource heterogeneous industrial data for the remaining life prediction of key components of machining equipment.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2765544</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Big Data ; Communications systems ; Data mining ; Data models ; Data processing ; Feature extraction ; Industrial applications ; Industrial big data ; Industries ; Industry 4.0 ; Life prediction ; Machining ; Manufacturing processes ; multiple invisible factors ; multisource heterogeneous data ; Plant reliability ; Predictive maintenance ; structuralization and characterization ; System reliability</subject><ispartof>IEEE access, 2017-01, Vol.5, p.23484-23491</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03</citedby><cites>FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03</cites><orcidid>0000-0003-1738-8374 ; 0000-0001-9139-8955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8085101$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yan, Jihong</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Lu, Lei</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><title>Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance</title><title>IEEE access</title><addtitle>Access</addtitle><description>Industry 4.0 can make a factory smart by applying intelligent information processing approaches, communication systems, future-oriented techniques, and more. However, the high complexity, automation, and flexibility of an intelligent factory bring new challenges to reliability and safety. Industrial big data generated by multisource sensors, intercommunication within the system and external-related information, and so on, might provide new solutions for predictive maintenance to improve system reliability. This paper puts forth attributes of industrial big data processing and actively explores industrial big data processing-based predictive maintenance. A novel framework is proposed for structuring multisource heterogeneous information, characterizing structured data with consideration of the spatiotemporal property, and modeling invisible factors, which would make the production process transparent and eventually implement predictive maintenance on facilities and energy saving in the industry 4.0 era. The effectiveness of the proposed scheme was verified by analyzing multisource heterogeneous industrial data for the remaining life prediction of key components of machining equipment.</description><subject>Big Data</subject><subject>Communications systems</subject><subject>Data mining</subject><subject>Data models</subject><subject>Data processing</subject><subject>Feature extraction</subject><subject>Industrial applications</subject><subject>Industrial big data</subject><subject>Industries</subject><subject>Industry 4.0</subject><subject>Life prediction</subject><subject>Machining</subject><subject>Manufacturing processes</subject><subject>multiple invisible factors</subject><subject>multisource heterogeneous data</subject><subject>Plant reliability</subject><subject>Predictive maintenance</subject><subject>structuralization and characterization</subject><subject>System reliability</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQXUoLDUm-IBdBr7UraSWttjd36zSGlAacnsVYGjkya8nVyoH8fddZEzIMzGNm3puBV1U3jM4Zo-23Rdct1-s5p6yZ80ZJKcSH6oIz1c5qWauP7_Dn6noYdnQMPbZkc1GVVXTHoeQAPfkRtuQnFCAhEojkPHkhYk7JMj6HnOIeY_lOuifoe4xbHL6StX3C_QlAdGRxOPTBQgkpDsSnTB4yumBLeEbyG0IsGCFavKo-eegHvD7Xy-rv7fKxu5vd__m16hb3MyukLjPLRausRFQCmG8AwWnWSiupQKZFLdWYTa2plZ4DpV4wKdyGK1R-4x2tL6vVpOsS7Mwhhz3kF5MgmNdGylsDuQTbo3HStUxxC7pVAkdRzbnWtBVOqY3zbtT6Mmkdcvp3xKGYXTrmOL5vuJCyFaKlYtyqpy2b0zBk9G9XGTUnt8zkljm5Zc5ujaybiRUQ8Y2hqZaMsvo_37iPcQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Yan, Jihong</creator><creator>Meng, Yue</creator><creator>Lu, Lei</creator><creator>Li, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1738-8374</orcidid><orcidid>https://orcid.org/0000-0001-9139-8955</orcidid></search><sort><creationdate>20170101</creationdate><title>Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance</title><author>Yan, Jihong ; Meng, Yue ; Lu, Lei ; Li, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Big Data</topic><topic>Communications systems</topic><topic>Data mining</topic><topic>Data models</topic><topic>Data processing</topic><topic>Feature extraction</topic><topic>Industrial applications</topic><topic>Industrial big data</topic><topic>Industries</topic><topic>Industry 4.0</topic><topic>Life prediction</topic><topic>Machining</topic><topic>Manufacturing processes</topic><topic>multiple invisible factors</topic><topic>multisource heterogeneous data</topic><topic>Plant reliability</topic><topic>Predictive maintenance</topic><topic>structuralization and characterization</topic><topic>System reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jihong</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Lu, Lei</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jihong</au><au>Meng, Yue</au><au>Lu, Lei</au><au>Li, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>23484</spage><epage>23491</epage><pages>23484-23491</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Industry 4.0 can make a factory smart by applying intelligent information processing approaches, communication systems, future-oriented techniques, and more. However, the high complexity, automation, and flexibility of an intelligent factory bring new challenges to reliability and safety. Industrial big data generated by multisource sensors, intercommunication within the system and external-related information, and so on, might provide new solutions for predictive maintenance to improve system reliability. This paper puts forth attributes of industrial big data processing and actively explores industrial big data processing-based predictive maintenance. A novel framework is proposed for structuring multisource heterogeneous information, characterizing structured data with consideration of the spatiotemporal property, and modeling invisible factors, which would make the production process transparent and eventually implement predictive maintenance on facilities and energy saving in the industry 4.0 era. The effectiveness of the proposed scheme was verified by analyzing multisource heterogeneous industrial data for the remaining life prediction of key components of machining equipment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2765544</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1738-8374</orcidid><orcidid>https://orcid.org/0000-0001-9139-8955</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2017-01, Vol.5, p.23484-23491 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455944904 |
source | IEEE Open Access Journals |
subjects | Big Data Communications systems Data mining Data models Data processing Feature extraction Industrial applications Industrial big data Industries Industry 4.0 Life prediction Machining Manufacturing processes multiple invisible factors multisource heterogeneous data Plant reliability Predictive maintenance structuralization and characterization System reliability |
title | Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Industrial%20Big%20Data%20in%20an%20Industry%204.0%20Environment:%20Challenges,%20Schemes,%20and%20Applications%20for%20Predictive%20Maintenance&rft.jtitle=IEEE%20access&rft.au=Yan,%20Jihong&rft.date=2017-01-01&rft.volume=5&rft.spage=23484&rft.epage=23491&rft.pages=23484-23491&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2765544&rft_dat=%3Cproquest_cross%3E2455944904%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455944904&rft_id=info:pmid/&rft_ieee_id=8085101&rfr_iscdi=true |