Loading…

Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance

Industry 4.0 can make a factory smart by applying intelligent information processing approaches, communication systems, future-oriented techniques, and more. However, the high complexity, automation, and flexibility of an intelligent factory bring new challenges to reliability and safety. Industrial...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2017-01, Vol.5, p.23484-23491
Main Authors: Yan, Jihong, Meng, Yue, Lu, Lei, Li, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03
cites cdi_FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03
container_end_page 23491
container_issue
container_start_page 23484
container_title IEEE access
container_volume 5
creator Yan, Jihong
Meng, Yue
Lu, Lei
Li, Lin
description Industry 4.0 can make a factory smart by applying intelligent information processing approaches, communication systems, future-oriented techniques, and more. However, the high complexity, automation, and flexibility of an intelligent factory bring new challenges to reliability and safety. Industrial big data generated by multisource sensors, intercommunication within the system and external-related information, and so on, might provide new solutions for predictive maintenance to improve system reliability. This paper puts forth attributes of industrial big data processing and actively explores industrial big data processing-based predictive maintenance. A novel framework is proposed for structuring multisource heterogeneous information, characterizing structured data with consideration of the spatiotemporal property, and modeling invisible factors, which would make the production process transparent and eventually implement predictive maintenance on facilities and energy saving in the industry 4.0 era. The effectiveness of the proposed scheme was verified by analyzing multisource heterogeneous industrial data for the remaining life prediction of key components of machining equipment.
doi_str_mv 10.1109/ACCESS.2017.2765544
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455944904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8085101</ieee_id><doaj_id>oai_doaj_org_article_d5d9162ca8964e73882288094d66bdfd</doaj_id><sourcerecordid>2455944904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03</originalsourceid><addsrcrecordid>eNpNUcFqGzEQXUoLDUm-IBdBr7UraSWttjd36zSGlAacnsVYGjkya8nVyoH8fddZEzIMzGNm3puBV1U3jM4Zo-23Rdct1-s5p6yZ80ZJKcSH6oIz1c5qWauP7_Dn6noYdnQMPbZkc1GVVXTHoeQAPfkRtuQnFCAhEojkPHkhYk7JMj6HnOIeY_lOuifoe4xbHL6StX3C_QlAdGRxOPTBQgkpDsSnTB4yumBLeEbyG0IsGCFavKo-eegHvD7Xy-rv7fKxu5vd__m16hb3MyukLjPLRausRFQCmG8AwWnWSiupQKZFLdWYTa2plZ4DpV4wKdyGK1R-4x2tL6vVpOsS7Mwhhz3kF5MgmNdGylsDuQTbo3HStUxxC7pVAkdRzbnWtBVOqY3zbtT6Mmkdcvp3xKGYXTrmOL5vuJCyFaKlYtyqpy2b0zBk9G9XGTUnt8zkljm5Zc5ujaybiRUQ8Y2hqZaMsvo_37iPcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455944904</pqid></control><display><type>article</type><title>Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance</title><source>IEEE Open Access Journals</source><creator>Yan, Jihong ; Meng, Yue ; Lu, Lei ; Li, Lin</creator><creatorcontrib>Yan, Jihong ; Meng, Yue ; Lu, Lei ; Li, Lin</creatorcontrib><description>Industry 4.0 can make a factory smart by applying intelligent information processing approaches, communication systems, future-oriented techniques, and more. However, the high complexity, automation, and flexibility of an intelligent factory bring new challenges to reliability and safety. Industrial big data generated by multisource sensors, intercommunication within the system and external-related information, and so on, might provide new solutions for predictive maintenance to improve system reliability. This paper puts forth attributes of industrial big data processing and actively explores industrial big data processing-based predictive maintenance. A novel framework is proposed for structuring multisource heterogeneous information, characterizing structured data with consideration of the spatiotemporal property, and modeling invisible factors, which would make the production process transparent and eventually implement predictive maintenance on facilities and energy saving in the industry 4.0 era. The effectiveness of the proposed scheme was verified by analyzing multisource heterogeneous industrial data for the remaining life prediction of key components of machining equipment.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2765544</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Big Data ; Communications systems ; Data mining ; Data models ; Data processing ; Feature extraction ; Industrial applications ; Industrial big data ; Industries ; Industry 4.0 ; Life prediction ; Machining ; Manufacturing processes ; multiple invisible factors ; multisource heterogeneous data ; Plant reliability ; Predictive maintenance ; structuralization and characterization ; System reliability</subject><ispartof>IEEE access, 2017-01, Vol.5, p.23484-23491</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03</citedby><cites>FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03</cites><orcidid>0000-0003-1738-8374 ; 0000-0001-9139-8955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8085101$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yan, Jihong</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Lu, Lei</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><title>Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance</title><title>IEEE access</title><addtitle>Access</addtitle><description>Industry 4.0 can make a factory smart by applying intelligent information processing approaches, communication systems, future-oriented techniques, and more. However, the high complexity, automation, and flexibility of an intelligent factory bring new challenges to reliability and safety. Industrial big data generated by multisource sensors, intercommunication within the system and external-related information, and so on, might provide new solutions for predictive maintenance to improve system reliability. This paper puts forth attributes of industrial big data processing and actively explores industrial big data processing-based predictive maintenance. A novel framework is proposed for structuring multisource heterogeneous information, characterizing structured data with consideration of the spatiotemporal property, and modeling invisible factors, which would make the production process transparent and eventually implement predictive maintenance on facilities and energy saving in the industry 4.0 era. The effectiveness of the proposed scheme was verified by analyzing multisource heterogeneous industrial data for the remaining life prediction of key components of machining equipment.</description><subject>Big Data</subject><subject>Communications systems</subject><subject>Data mining</subject><subject>Data models</subject><subject>Data processing</subject><subject>Feature extraction</subject><subject>Industrial applications</subject><subject>Industrial big data</subject><subject>Industries</subject><subject>Industry 4.0</subject><subject>Life prediction</subject><subject>Machining</subject><subject>Manufacturing processes</subject><subject>multiple invisible factors</subject><subject>multisource heterogeneous data</subject><subject>Plant reliability</subject><subject>Predictive maintenance</subject><subject>structuralization and characterization</subject><subject>System reliability</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQXUoLDUm-IBdBr7UraSWttjd36zSGlAacnsVYGjkya8nVyoH8fddZEzIMzGNm3puBV1U3jM4Zo-23Rdct1-s5p6yZ80ZJKcSH6oIz1c5qWauP7_Dn6noYdnQMPbZkc1GVVXTHoeQAPfkRtuQnFCAhEojkPHkhYk7JMj6HnOIeY_lOuifoe4xbHL6StX3C_QlAdGRxOPTBQgkpDsSnTB4yumBLeEbyG0IsGCFavKo-eegHvD7Xy-rv7fKxu5vd__m16hb3MyukLjPLRausRFQCmG8AwWnWSiupQKZFLdWYTa2plZ4DpV4wKdyGK1R-4x2tL6vVpOsS7Mwhhz3kF5MgmNdGylsDuQTbo3HStUxxC7pVAkdRzbnWtBVOqY3zbtT6Mmkdcvp3xKGYXTrmOL5vuJCyFaKlYtyqpy2b0zBk9G9XGTUnt8zkljm5Zc5ujaybiRUQ8Y2hqZaMsvo_37iPcQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Yan, Jihong</creator><creator>Meng, Yue</creator><creator>Lu, Lei</creator><creator>Li, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1738-8374</orcidid><orcidid>https://orcid.org/0000-0001-9139-8955</orcidid></search><sort><creationdate>20170101</creationdate><title>Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance</title><author>Yan, Jihong ; Meng, Yue ; Lu, Lei ; Li, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Big Data</topic><topic>Communications systems</topic><topic>Data mining</topic><topic>Data models</topic><topic>Data processing</topic><topic>Feature extraction</topic><topic>Industrial applications</topic><topic>Industrial big data</topic><topic>Industries</topic><topic>Industry 4.0</topic><topic>Life prediction</topic><topic>Machining</topic><topic>Manufacturing processes</topic><topic>multiple invisible factors</topic><topic>multisource heterogeneous data</topic><topic>Plant reliability</topic><topic>Predictive maintenance</topic><topic>structuralization and characterization</topic><topic>System reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jihong</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Lu, Lei</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jihong</au><au>Meng, Yue</au><au>Lu, Lei</au><au>Li, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>23484</spage><epage>23491</epage><pages>23484-23491</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Industry 4.0 can make a factory smart by applying intelligent information processing approaches, communication systems, future-oriented techniques, and more. However, the high complexity, automation, and flexibility of an intelligent factory bring new challenges to reliability and safety. Industrial big data generated by multisource sensors, intercommunication within the system and external-related information, and so on, might provide new solutions for predictive maintenance to improve system reliability. This paper puts forth attributes of industrial big data processing and actively explores industrial big data processing-based predictive maintenance. A novel framework is proposed for structuring multisource heterogeneous information, characterizing structured data with consideration of the spatiotemporal property, and modeling invisible factors, which would make the production process transparent and eventually implement predictive maintenance on facilities and energy saving in the industry 4.0 era. The effectiveness of the proposed scheme was verified by analyzing multisource heterogeneous industrial data for the remaining life prediction of key components of machining equipment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2765544</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1738-8374</orcidid><orcidid>https://orcid.org/0000-0001-9139-8955</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2017-01, Vol.5, p.23484-23491
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455944904
source IEEE Open Access Journals
subjects Big Data
Communications systems
Data mining
Data models
Data processing
Feature extraction
Industrial applications
Industrial big data
Industries
Industry 4.0
Life prediction
Machining
Manufacturing processes
multiple invisible factors
multisource heterogeneous data
Plant reliability
Predictive maintenance
structuralization and characterization
System reliability
title Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Industrial%20Big%20Data%20in%20an%20Industry%204.0%20Environment:%20Challenges,%20Schemes,%20and%20Applications%20for%20Predictive%20Maintenance&rft.jtitle=IEEE%20access&rft.au=Yan,%20Jihong&rft.date=2017-01-01&rft.volume=5&rft.spage=23484&rft.epage=23491&rft.pages=23484-23491&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2765544&rft_dat=%3Cproquest_cross%3E2455944904%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-c2496c5ee64a1f7aead8195c504e1843563567380c5f2a00f4154db26e6fbfd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455944904&rft_id=info:pmid/&rft_ieee_id=8085101&rfr_iscdi=true