Loading…

APMSID: Activated Probability for Multi-Source Information Diffusion in Online Social Networks

Multi-source diffusion is a common phenomenon in online social networks (OSNs) that involves pieces of information with different purposes concurrently propagating over networks in a cooperative or competitive way. A traditional activated probability model for single-source diffusion cannot be direc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018, Vol.6, p.64435-64449
Main Authors: Tan, Zhenhua, Wu, Danke, Yang, Guangming, Bin, Zhang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-7e9163197a5860ee79ea6ba593adc2624d3bdbb005907721155ef8a94e1cbef53
cites cdi_FETCH-LOGICAL-c408t-7e9163197a5860ee79ea6ba593adc2624d3bdbb005907721155ef8a94e1cbef53
container_end_page 64449
container_issue
container_start_page 64435
container_title IEEE access
container_volume 6
creator Tan, Zhenhua
Wu, Danke
Yang, Guangming
Bin, Zhang
description Multi-source diffusion is a common phenomenon in online social networks (OSNs) that involves pieces of information with different purposes concurrently propagating over networks in a cooperative or competitive way. A traditional activated probability model for single-source diffusion cannot be directly applied to multi-source diffusion, especially when these diffusions interfere with each other. We consider that herd behavior exists over multi-source information diffusion in OSNs, and we propose a more rational activated probability pattern for multi-source diffusion, activated probability for multi-source information diffusion (APMSID), inspired by the herding effect. APMSID consists of three components to calculate the final activated probability to the destination node, including the influence of percentage (IOP), the influence of energy (IOE), and the influence of competition (IOC). APMSID fully considers the homologous diffusion (cooperation) personalization of the infected percentage by IOP and influence energy direction by IOE and considers the negative influence of IOC from competitive information diffusion. Mathematical modeling and algorithms are designed in detail. Experiments based on the real datasets of Epinions, wiki-Vote, Slashdot, and Micro-blog show that the proposed APMSID is more rational and accurate than the traditional method. APMSID can effectively solve the probabilistic reasoning problem of the multi-source diffusion phenomenon and is superior to the IC model in predicting the accuracy of the infected nodes.
doi_str_mv 10.1109/ACCESS.2018.2877797
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2456066766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8506359</ieee_id><doaj_id>oai_doaj_org_article_c3ffdc05625e42e8a44688b7e908b55a</doaj_id><sourcerecordid>2456066766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7e9163197a5860ee79ea6ba593adc2624d3bdbb005907721155ef8a94e1cbef53</originalsourceid><addsrcrecordid>eNpNUctOHDEQHKFEAgFfwMUS59n4MX7ltlpIshIEpEmusWxPG3kzjInHS8Tfx8sglL50q9RVXa1qmguCV4Rg_Wm92Vz3_YpiolZUSSm1PGpOKBG6ZZyJD__Nx835PO9wLVUhLk-aX-v723579RmtfYnPtsCA7nNy1sUxlhcUUka3-7HEtk_77AFtpwo92hLThK5iCPv5MMUJ3U1jnAD1yUc7ou9Q_qb8ez5rPgY7znD-1k-bn1-uf2y-tTd3X7eb9U3rO6xKK0ETwYiWliuBAaQGK5zlmtnBU0G7gbnBOYy5xlJSQjiHoKzugHgHgbPTZrvoDsnuzFOOjza_mGSjeQVSfjA2l-hHMJ6FMHjMBeXQUVC264RSrlrAynFuq9blovWU0589zMXs6u9TtW9oxwUWQgpRt9iy5XOa5wzh_SrB5pCLWXIxh1zMWy6VdbGwIgC8MxTHgtVn_wEzDYiv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456066766</pqid></control><display><type>article</type><title>APMSID: Activated Probability for Multi-Source Information Diffusion in Online Social Networks</title><source>IEEE Xplore Open Access Journals</source><creator>Tan, Zhenhua ; Wu, Danke ; Yang, Guangming ; Bin, Zhang</creator><creatorcontrib>Tan, Zhenhua ; Wu, Danke ; Yang, Guangming ; Bin, Zhang</creatorcontrib><description>Multi-source diffusion is a common phenomenon in online social networks (OSNs) that involves pieces of information with different purposes concurrently propagating over networks in a cooperative or competitive way. A traditional activated probability model for single-source diffusion cannot be directly applied to multi-source diffusion, especially when these diffusions interfere with each other. We consider that herd behavior exists over multi-source information diffusion in OSNs, and we propose a more rational activated probability pattern for multi-source diffusion, activated probability for multi-source information diffusion (APMSID), inspired by the herding effect. APMSID consists of three components to calculate the final activated probability to the destination node, including the influence of percentage (IOP), the influence of energy (IOE), and the influence of competition (IOC). APMSID fully considers the homologous diffusion (cooperation) personalization of the infected percentage by IOP and influence energy direction by IOE and considers the negative influence of IOC from competitive information diffusion. Mathematical modeling and algorithms are designed in detail. Experiments based on the real datasets of Epinions, wiki-Vote, Slashdot, and Micro-blog show that the proposed APMSID is more rational and accurate than the traditional method. APMSID can effectively solve the probabilistic reasoning problem of the multi-source diffusion phenomenon and is superior to the IC model in predicting the accuracy of the infected nodes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2877797</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>activated probability ; Algorithms ; Analytical models ; Diffusion ; Homology ; influence probability ; influence propagation ; information diffusion ; Information dissemination ; Integrated circuit modeling ; Ions ; Model accuracy ; Peer-to-peer computing ; Social network services ; Social networks ; Statistical analysis ; Technological innovation</subject><ispartof>IEEE access, 2018, Vol.6, p.64435-64449</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7e9163197a5860ee79ea6ba593adc2624d3bdbb005907721155ef8a94e1cbef53</citedby><cites>FETCH-LOGICAL-c408t-7e9163197a5860ee79ea6ba593adc2624d3bdbb005907721155ef8a94e1cbef53</cites><orcidid>0000-0002-9870-8925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8506359$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,4012,27620,27910,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>Tan, Zhenhua</creatorcontrib><creatorcontrib>Wu, Danke</creatorcontrib><creatorcontrib>Yang, Guangming</creatorcontrib><creatorcontrib>Bin, Zhang</creatorcontrib><title>APMSID: Activated Probability for Multi-Source Information Diffusion in Online Social Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Multi-source diffusion is a common phenomenon in online social networks (OSNs) that involves pieces of information with different purposes concurrently propagating over networks in a cooperative or competitive way. A traditional activated probability model for single-source diffusion cannot be directly applied to multi-source diffusion, especially when these diffusions interfere with each other. We consider that herd behavior exists over multi-source information diffusion in OSNs, and we propose a more rational activated probability pattern for multi-source diffusion, activated probability for multi-source information diffusion (APMSID), inspired by the herding effect. APMSID consists of three components to calculate the final activated probability to the destination node, including the influence of percentage (IOP), the influence of energy (IOE), and the influence of competition (IOC). APMSID fully considers the homologous diffusion (cooperation) personalization of the infected percentage by IOP and influence energy direction by IOE and considers the negative influence of IOC from competitive information diffusion. Mathematical modeling and algorithms are designed in detail. Experiments based on the real datasets of Epinions, wiki-Vote, Slashdot, and Micro-blog show that the proposed APMSID is more rational and accurate than the traditional method. APMSID can effectively solve the probabilistic reasoning problem of the multi-source diffusion phenomenon and is superior to the IC model in predicting the accuracy of the infected nodes.</description><subject>activated probability</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Diffusion</subject><subject>Homology</subject><subject>influence probability</subject><subject>influence propagation</subject><subject>information diffusion</subject><subject>Information dissemination</subject><subject>Integrated circuit modeling</subject><subject>Ions</subject><subject>Model accuracy</subject><subject>Peer-to-peer computing</subject><subject>Social network services</subject><subject>Social networks</subject><subject>Statistical analysis</subject><subject>Technological innovation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOHDEQHKFEAgFfwMUS59n4MX7ltlpIshIEpEmusWxPG3kzjInHS8Tfx8sglL50q9RVXa1qmguCV4Rg_Wm92Vz3_YpiolZUSSm1PGpOKBG6ZZyJD__Nx835PO9wLVUhLk-aX-v723579RmtfYnPtsCA7nNy1sUxlhcUUka3-7HEtk_77AFtpwo92hLThK5iCPv5MMUJ3U1jnAD1yUc7ou9Q_qb8ez5rPgY7znD-1k-bn1-uf2y-tTd3X7eb9U3rO6xKK0ETwYiWliuBAaQGK5zlmtnBU0G7gbnBOYy5xlJSQjiHoKzugHgHgbPTZrvoDsnuzFOOjza_mGSjeQVSfjA2l-hHMJ6FMHjMBeXQUVC264RSrlrAynFuq9blovWU0589zMXs6u9TtW9oxwUWQgpRt9iy5XOa5wzh_SrB5pCLWXIxh1zMWy6VdbGwIgC8MxTHgtVn_wEzDYiv</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Tan, Zhenhua</creator><creator>Wu, Danke</creator><creator>Yang, Guangming</creator><creator>Bin, Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9870-8925</orcidid></search><sort><creationdate>2018</creationdate><title>APMSID: Activated Probability for Multi-Source Information Diffusion in Online Social Networks</title><author>Tan, Zhenhua ; Wu, Danke ; Yang, Guangming ; Bin, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7e9163197a5860ee79ea6ba593adc2624d3bdbb005907721155ef8a94e1cbef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>activated probability</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Diffusion</topic><topic>Homology</topic><topic>influence probability</topic><topic>influence propagation</topic><topic>information diffusion</topic><topic>Information dissemination</topic><topic>Integrated circuit modeling</topic><topic>Ions</topic><topic>Model accuracy</topic><topic>Peer-to-peer computing</topic><topic>Social network services</topic><topic>Social networks</topic><topic>Statistical analysis</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Zhenhua</creatorcontrib><creatorcontrib>Wu, Danke</creatorcontrib><creatorcontrib>Yang, Guangming</creatorcontrib><creatorcontrib>Bin, Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Zhenhua</au><au>Wu, Danke</au><au>Yang, Guangming</au><au>Bin, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APMSID: Activated Probability for Multi-Source Information Diffusion in Online Social Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>64435</spage><epage>64449</epage><pages>64435-64449</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Multi-source diffusion is a common phenomenon in online social networks (OSNs) that involves pieces of information with different purposes concurrently propagating over networks in a cooperative or competitive way. A traditional activated probability model for single-source diffusion cannot be directly applied to multi-source diffusion, especially when these diffusions interfere with each other. We consider that herd behavior exists over multi-source information diffusion in OSNs, and we propose a more rational activated probability pattern for multi-source diffusion, activated probability for multi-source information diffusion (APMSID), inspired by the herding effect. APMSID consists of three components to calculate the final activated probability to the destination node, including the influence of percentage (IOP), the influence of energy (IOE), and the influence of competition (IOC). APMSID fully considers the homologous diffusion (cooperation) personalization of the infected percentage by IOP and influence energy direction by IOE and considers the negative influence of IOC from competitive information diffusion. Mathematical modeling and algorithms are designed in detail. Experiments based on the real datasets of Epinions, wiki-Vote, Slashdot, and Micro-blog show that the proposed APMSID is more rational and accurate than the traditional method. APMSID can effectively solve the probabilistic reasoning problem of the multi-source diffusion phenomenon and is superior to the IC model in predicting the accuracy of the infected nodes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2877797</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9870-8925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018, Vol.6, p.64435-64449
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2456066766
source IEEE Xplore Open Access Journals
subjects activated probability
Algorithms
Analytical models
Diffusion
Homology
influence probability
influence propagation
information diffusion
Information dissemination
Integrated circuit modeling
Ions
Model accuracy
Peer-to-peer computing
Social network services
Social networks
Statistical analysis
Technological innovation
title APMSID: Activated Probability for Multi-Source Information Diffusion in Online Social Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APMSID:%20Activated%20Probability%20for%20Multi-Source%20Information%20Diffusion%20in%20Online%20Social%20Networks&rft.jtitle=IEEE%20access&rft.au=Tan,%20Zhenhua&rft.date=2018&rft.volume=6&rft.spage=64435&rft.epage=64449&rft.pages=64435-64449&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2877797&rft_dat=%3Cproquest_ieee_%3E2456066766%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7e9163197a5860ee79ea6ba593adc2624d3bdbb005907721155ef8a94e1cbef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456066766&rft_id=info:pmid/&rft_ieee_id=8506359&rfr_iscdi=true