Loading…
On non-repetitive sequences of arithmetic progressions: The cases
A d-subsequence of a sequence … for any positive integer d and any … A k-Thue sequence is a sequence in which every d -subsequence, for … , is non-repetitive, i.e. it contains no consecutive equal subsequences. In 2002, Grytczuk proposed a conjecture that for any k, k+2 symbols are enough to constru...
Saved in:
Published in: | Discrete Applied Mathematics 2020-05, Vol.279, p.106-117 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 117 |
container_issue | |
container_start_page | 106 |
container_title | Discrete Applied Mathematics |
container_volume | 279 |
creator | Luzar, Borut Mockovciakova, Martina Ochem, Pascal Pinlou, Alexandre Sotak, Roman |
description | A d-subsequence of a sequence … for any positive integer d and any … A k-Thue sequence is a sequence in which every d -subsequence, for … , is non-repetitive, i.e. it contains no consecutive equal subsequences. In 2002, Grytczuk proposed a conjecture that for any k, k+2 symbols are enough to construct a k-Thue sequence of arbitrary lengths. So far, the conjecture has been confirmed for … -Thue sequence of arbitrary lengths. So far, the conjecture has been confirmed for … (ProQuest: … denotes formula omitted) |
doi_str_mv | 10.1016/j.dam.2019.10.013 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2456372863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456372863</sourcerecordid><originalsourceid>FETCH-proquest_journals_24563728633</originalsourceid><addsrcrecordid>eNqNjL0OgjAUhRujifjzAG5NnMHeogXdjNG4uTC4kQYvApEWe8Hnt4MP4FlOTr4vh7EViAgEqE0TPXQbSQF7vyMB8YgFkCYyVEkCYxZ4R4US0vuUzYga4QOpCtjxZrixJnTYYV_39Qc54XtAUyBxW3Lt6r5qPSp45-zTIVFtDR14ViEvNCEt2KTUL8Llr-dsfTlnp2vofX9Efd7YwRmPcrndqTiRqYrj_6wvanxA9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456372863</pqid></control><display><type>article</type><title>On non-repetitive sequences of arithmetic progressions: The cases</title><source>ScienceDirect Journals</source><creator>Luzar, Borut ; Mockovciakova, Martina ; Ochem, Pascal ; Pinlou, Alexandre ; Sotak, Roman</creator><creatorcontrib>Luzar, Borut ; Mockovciakova, Martina ; Ochem, Pascal ; Pinlou, Alexandre ; Sotak, Roman</creatorcontrib><description>A d-subsequence of a sequence … for any positive integer d and any … A k-Thue sequence is a sequence in which every d -subsequence, for … , is non-repetitive, i.e. it contains no consecutive equal subsequences. In 2002, Grytczuk proposed a conjecture that for any k, k+2 symbols are enough to construct a k-Thue sequence of arbitrary lengths. So far, the conjecture has been confirmed for … -Thue sequence of arbitrary lengths. So far, the conjecture has been confirmed for … (ProQuest: … denotes formula omitted)</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2019.10.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Progressions</subject><ispartof>Discrete Applied Mathematics, 2020-05, Vol.279, p.106-117</ispartof><rights>Copyright Elsevier BV May 31, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Luzar, Borut</creatorcontrib><creatorcontrib>Mockovciakova, Martina</creatorcontrib><creatorcontrib>Ochem, Pascal</creatorcontrib><creatorcontrib>Pinlou, Alexandre</creatorcontrib><creatorcontrib>Sotak, Roman</creatorcontrib><title>On non-repetitive sequences of arithmetic progressions: The cases</title><title>Discrete Applied Mathematics</title><description>A d-subsequence of a sequence … for any positive integer d and any … A k-Thue sequence is a sequence in which every d -subsequence, for … , is non-repetitive, i.e. it contains no consecutive equal subsequences. In 2002, Grytczuk proposed a conjecture that for any k, k+2 symbols are enough to construct a k-Thue sequence of arbitrary lengths. So far, the conjecture has been confirmed for … -Thue sequence of arbitrary lengths. So far, the conjecture has been confirmed for … (ProQuest: … denotes formula omitted)</description><subject>Progressions</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjL0OgjAUhRujifjzAG5NnMHeogXdjNG4uTC4kQYvApEWe8Hnt4MP4FlOTr4vh7EViAgEqE0TPXQbSQF7vyMB8YgFkCYyVEkCYxZ4R4US0vuUzYga4QOpCtjxZrixJnTYYV_39Qc54XtAUyBxW3Lt6r5qPSp45-zTIVFtDR14ViEvNCEt2KTUL8Llr-dsfTlnp2vofX9Efd7YwRmPcrndqTiRqYrj_6wvanxA9Q</recordid><startdate>20200531</startdate><enddate>20200531</enddate><creator>Luzar, Borut</creator><creator>Mockovciakova, Martina</creator><creator>Ochem, Pascal</creator><creator>Pinlou, Alexandre</creator><creator>Sotak, Roman</creator><general>Elsevier BV</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200531</creationdate><title>On non-repetitive sequences of arithmetic progressions: The cases</title><author>Luzar, Borut ; Mockovciakova, Martina ; Ochem, Pascal ; Pinlou, Alexandre ; Sotak, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24563728633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Progressions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luzar, Borut</creatorcontrib><creatorcontrib>Mockovciakova, Martina</creatorcontrib><creatorcontrib>Ochem, Pascal</creatorcontrib><creatorcontrib>Pinlou, Alexandre</creatorcontrib><creatorcontrib>Sotak, Roman</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luzar, Borut</au><au>Mockovciakova, Martina</au><au>Ochem, Pascal</au><au>Pinlou, Alexandre</au><au>Sotak, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On non-repetitive sequences of arithmetic progressions: The cases</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-05-31</date><risdate>2020</risdate><volume>279</volume><spage>106</spage><epage>117</epage><pages>106-117</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A d-subsequence of a sequence … for any positive integer d and any … A k-Thue sequence is a sequence in which every d -subsequence, for … , is non-repetitive, i.e. it contains no consecutive equal subsequences. In 2002, Grytczuk proposed a conjecture that for any k, k+2 symbols are enough to construct a k-Thue sequence of arbitrary lengths. So far, the conjecture has been confirmed for … -Thue sequence of arbitrary lengths. So far, the conjecture has been confirmed for … (ProQuest: … denotes formula omitted)</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.dam.2019.10.013</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2020-05, Vol.279, p.106-117 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2456372863 |
source | ScienceDirect Journals |
subjects | Progressions |
title | On non-repetitive sequences of arithmetic progressions: The cases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20non-repetitive%20sequences%20of%20arithmetic%20progressions:%20The%20cases&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Luzar,%20Borut&rft.date=2020-05-31&rft.volume=279&rft.spage=106&rft.epage=117&rft.pages=106-117&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2019.10.013&rft_dat=%3Cproquest%3E2456372863%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24563728633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456372863&rft_id=info:pmid/&rfr_iscdi=true |