Loading…

A Time Domain-Based Iterative Method for Helicopter Maritime Search Area Planning and Construction of the Simulation Environment

Helicopters are widely used in maritime search and rescue (SAR) missions. To improve the probability of success (POS) of SAR missions, search areas should be carefully planned. However, the search area is usually determined based on the survivors' probable locations at a given moment by existin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.191460-191471
Main Authors: Xiong, Peisen, Liu, Hu, Tian, Yongliang, Chen, Zikun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Helicopters are widely used in maritime search and rescue (SAR) missions. To improve the probability of success (POS) of SAR missions, search areas should be carefully planned. However, the search area is usually determined based on the survivors' probable locations at a given moment by existing planning methods, while the effects of the relative motion between the helicopter and the search objects are ignored, possibly leading to a significant decrease in the POS. To minimize the impact of search object motion, a time domain-based iterative planning (TIP) method is proposed in this article to obtain the optimal search areas. The survivors' probable locations and mean drift direction are updated iteratively, while the probability map is developed by taking survivors' mean drift direction as a reference. Then, the optimal search area is determined by an iterative search method starting from the cell with the highest probability of containment. To evaluate the effectiveness of a search plan, an agent-based simulation environment of a maritime search mission is constructed based on the AnyLogic simulation platform. Taking a capsizing case as an example, the simulation results show that the novel TIP method minimizes the impact of search object motion on the search effectiveness and obtains higher POS values than those obtained by other methods.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3032583