Loading…
A constant-frequency feedback loop for non-contact frequency-modulated atomic force microscopy via root locus: Implemented on a single-board field-programmable gate array device
Non-contact, frequency modulated atomic force microscopy is often operated in the constant-frequency mode to obtain a height map of the sample’s surface. Once linearized, the dynamics of the constant-frequency closed-loop system are reduced to a single transfer function. By modifying the bandwidth o...
Saved in:
Published in: | Review of scientific instruments 2020-11, Vol.91 (11), p.113702-113702 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Non-contact, frequency modulated atomic force microscopy is often operated in the constant-frequency mode to obtain a height map of the sample’s surface. Once linearized, the dynamics of the constant-frequency closed-loop system are reduced to a single transfer function. By modifying the bandwidth of this transfer function, a tradeoff is achieved between image noise and imaging speed. In this article, a new constant-frequency feedback loop is developed, utilizing the self-excitation technique for resonating the cantilever. Along with the proposed controller, it will be shown with the root locus that one needs to vary a single parameter, the loop gain, to modify the closed-loop bandwidth. The result is a robust, low-order, real-poled, feedback loop that is very easy to tune. The methodology is validated experimentally on a single-board field-programmable gate array device. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0023144 |