Loading…
Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber
Effectively addressing global warming requires a rapid transformation of the ways in which energy is consumed, and nuclear power produces very low lifecycle carbon emissions. Efficient uranium extraction from unconventional uranium ore sources, such as the ocean, can provide a stable and long-term s...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-11, Vol.8 (42), p.22032-22044 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903 |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903 |
container_end_page | 22044 |
container_issue | 42 |
container_start_page | 22032 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Xu, Xiao Xu, Lu Ao, Junxuan Liang, Yulin Li, Cheng Wang, Yangjie Huang, Chen Ye, Feng Li, Qingnuan Guo, Xiaojing Li, Jingye Wang, Hengti Ma, Shengqian Ma, Hongjuan |
description | Effectively addressing global warming requires a rapid transformation of the ways in which energy is consumed, and nuclear power produces very low lifecycle carbon emissions. Efficient uranium extraction from unconventional uranium ore sources, such as the ocean, can provide a stable and long-term supply of nuclear fuel for nuclear power plants. Herein, we report an interconnected open-pore architecture poly(amidoxime) (PAO) fiber with PAO nanoparticles and a nano-channel structure (AO-OpNpNc) using a top-down design. A high uranium adsorption capacity of 17.57 mg-U per g-adsorbent in natural seawater and ultra-long service life of at least 30 cycles were obtained, which are the highest values among currently available adsorbents to our knowledge. Extended X-ray absorption fine structure (EXAFS) fits and density functional theory (DFT) computational studies suggest that PAO-bound uranyl is a cooperative chelating model. More importantly, uranium production costs could be reduced to $80.70–86.25 per kg of uranium with this fiber, which is similar to the uranium spot price of $86.68 per kg of uranium and lower than the costs of all currently available adsorbents. The exceptional durability of the AO-OpNpNc fibers suggests the possibility of economically producing nuclear fuel from the ocean. |
doi_str_mv | 10.1039/D0TA07180C |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2456855102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456855102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903</originalsourceid><addsrcrecordid>eNpFkE9LxDAQxYMouKx78RMEvKhQnTZN2xyX9S8seNk9lzSduFnapKatbr-9kRWdy7wZfvMGHiGXMdzFwMT9A2yWkMcFrE7ILAEOUZ6K7PRPF8U5WfT9HkIVAJkQMzJtm8HLnXnfUWlrispZ1xolGzp6ac3YUjwEQA3GWaq9a2mP8ksO6OmnkdTYoMKNRTVgTV2HNuqcRyq92pkhbMcwdK6ZrmVrancwLd5QbSr0F-RMy6bHxW-fk-3T42b1Eq3fnl9Xy3WkEpENUcLSnLOsUqg1VFoLrSouUiZUjIrVIudZFteImIIQea4rRJ6iSIta1JoJYHNydfTtvPsYsR_KvRu9DS_LJOVZwXkMSaBuj5Tyru896rLzppV-KmMof9It_9Nl30MDb1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456855102</pqid></control><display><type>article</type><title>Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber</title><source>Royal Society of Chemistry</source><creator>Xu, Xiao ; Xu, Lu ; Ao, Junxuan ; Liang, Yulin ; Li, Cheng ; Wang, Yangjie ; Huang, Chen ; Ye, Feng ; Li, Qingnuan ; Guo, Xiaojing ; Li, Jingye ; Wang, Hengti ; Ma, Shengqian ; Ma, Hongjuan</creator><creatorcontrib>Xu, Xiao ; Xu, Lu ; Ao, Junxuan ; Liang, Yulin ; Li, Cheng ; Wang, Yangjie ; Huang, Chen ; Ye, Feng ; Li, Qingnuan ; Guo, Xiaojing ; Li, Jingye ; Wang, Hengti ; Ma, Shengqian ; Ma, Hongjuan</creatorcontrib><description>Effectively addressing global warming requires a rapid transformation of the ways in which energy is consumed, and nuclear power produces very low lifecycle carbon emissions. Efficient uranium extraction from unconventional uranium ore sources, such as the ocean, can provide a stable and long-term supply of nuclear fuel for nuclear power plants. Herein, we report an interconnected open-pore architecture poly(amidoxime) (PAO) fiber with PAO nanoparticles and a nano-channel structure (AO-OpNpNc) using a top-down design. A high uranium adsorption capacity of 17.57 mg-U per g-adsorbent in natural seawater and ultra-long service life of at least 30 cycles were obtained, which are the highest values among currently available adsorbents to our knowledge. Extended X-ray absorption fine structure (EXAFS) fits and density functional theory (DFT) computational studies suggest that PAO-bound uranyl is a cooperative chelating model. More importantly, uranium production costs could be reduced to $80.70–86.25 per kg of uranium with this fiber, which is similar to the uranium spot price of $86.68 per kg of uranium and lower than the costs of all currently available adsorbents. The exceptional durability of the AO-OpNpNc fibers suggests the possibility of economically producing nuclear fuel from the ocean.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D0TA07180C</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorbents ; Chelation ; Climate change ; Computer applications ; Density functional theory ; Fibers ; Fine structure ; Genetic transformation ; Global warming ; Nanochannels ; Nanoparticles ; Nuclear energy ; Nuclear fuels ; Nuclear power plants ; Power consumption ; Production costs ; Seawater ; Service life ; Ultrastructure ; Uranium ; Uranium ores ; X ray absorption</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-11, Vol.8 (42), p.22032-22044</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903</citedby><cites>FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903</cites><orcidid>0000-0003-3474-0659 ; 0000-0001-8160-7194 ; 0000-0002-1897-7069 ; 0000-0001-8576-6432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Xu, Lu</creatorcontrib><creatorcontrib>Ao, Junxuan</creatorcontrib><creatorcontrib>Liang, Yulin</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Wang, Yangjie</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>Ye, Feng</creatorcontrib><creatorcontrib>Li, Qingnuan</creatorcontrib><creatorcontrib>Guo, Xiaojing</creatorcontrib><creatorcontrib>Li, Jingye</creatorcontrib><creatorcontrib>Wang, Hengti</creatorcontrib><creatorcontrib>Ma, Shengqian</creatorcontrib><creatorcontrib>Ma, Hongjuan</creatorcontrib><title>Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Effectively addressing global warming requires a rapid transformation of the ways in which energy is consumed, and nuclear power produces very low lifecycle carbon emissions. Efficient uranium extraction from unconventional uranium ore sources, such as the ocean, can provide a stable and long-term supply of nuclear fuel for nuclear power plants. Herein, we report an interconnected open-pore architecture poly(amidoxime) (PAO) fiber with PAO nanoparticles and a nano-channel structure (AO-OpNpNc) using a top-down design. A high uranium adsorption capacity of 17.57 mg-U per g-adsorbent in natural seawater and ultra-long service life of at least 30 cycles were obtained, which are the highest values among currently available adsorbents to our knowledge. Extended X-ray absorption fine structure (EXAFS) fits and density functional theory (DFT) computational studies suggest that PAO-bound uranyl is a cooperative chelating model. More importantly, uranium production costs could be reduced to $80.70–86.25 per kg of uranium with this fiber, which is similar to the uranium spot price of $86.68 per kg of uranium and lower than the costs of all currently available adsorbents. The exceptional durability of the AO-OpNpNc fibers suggests the possibility of economically producing nuclear fuel from the ocean.</description><subject>Adsorbents</subject><subject>Chelation</subject><subject>Climate change</subject><subject>Computer applications</subject><subject>Density functional theory</subject><subject>Fibers</subject><subject>Fine structure</subject><subject>Genetic transformation</subject><subject>Global warming</subject><subject>Nanochannels</subject><subject>Nanoparticles</subject><subject>Nuclear energy</subject><subject>Nuclear fuels</subject><subject>Nuclear power plants</subject><subject>Power consumption</subject><subject>Production costs</subject><subject>Seawater</subject><subject>Service life</subject><subject>Ultrastructure</subject><subject>Uranium</subject><subject>Uranium ores</subject><subject>X ray absorption</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LxDAQxYMouKx78RMEvKhQnTZN2xyX9S8seNk9lzSduFnapKatbr-9kRWdy7wZfvMGHiGXMdzFwMT9A2yWkMcFrE7ILAEOUZ6K7PRPF8U5WfT9HkIVAJkQMzJtm8HLnXnfUWlrispZ1xolGzp6ac3YUjwEQA3GWaq9a2mP8ksO6OmnkdTYoMKNRTVgTV2HNuqcRyq92pkhbMcwdK6ZrmVrancwLd5QbSr0F-RMy6bHxW-fk-3T42b1Eq3fnl9Xy3WkEpENUcLSnLOsUqg1VFoLrSouUiZUjIrVIudZFteImIIQea4rRJ6iSIta1JoJYHNydfTtvPsYsR_KvRu9DS_LJOVZwXkMSaBuj5Tyru896rLzppV-KmMof9It_9Nl30MDb1k</recordid><startdate>20201114</startdate><enddate>20201114</enddate><creator>Xu, Xiao</creator><creator>Xu, Lu</creator><creator>Ao, Junxuan</creator><creator>Liang, Yulin</creator><creator>Li, Cheng</creator><creator>Wang, Yangjie</creator><creator>Huang, Chen</creator><creator>Ye, Feng</creator><creator>Li, Qingnuan</creator><creator>Guo, Xiaojing</creator><creator>Li, Jingye</creator><creator>Wang, Hengti</creator><creator>Ma, Shengqian</creator><creator>Ma, Hongjuan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3474-0659</orcidid><orcidid>https://orcid.org/0000-0001-8160-7194</orcidid><orcidid>https://orcid.org/0000-0002-1897-7069</orcidid><orcidid>https://orcid.org/0000-0001-8576-6432</orcidid></search><sort><creationdate>20201114</creationdate><title>Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber</title><author>Xu, Xiao ; Xu, Lu ; Ao, Junxuan ; Liang, Yulin ; Li, Cheng ; Wang, Yangjie ; Huang, Chen ; Ye, Feng ; Li, Qingnuan ; Guo, Xiaojing ; Li, Jingye ; Wang, Hengti ; Ma, Shengqian ; Ma, Hongjuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorbents</topic><topic>Chelation</topic><topic>Climate change</topic><topic>Computer applications</topic><topic>Density functional theory</topic><topic>Fibers</topic><topic>Fine structure</topic><topic>Genetic transformation</topic><topic>Global warming</topic><topic>Nanochannels</topic><topic>Nanoparticles</topic><topic>Nuclear energy</topic><topic>Nuclear fuels</topic><topic>Nuclear power plants</topic><topic>Power consumption</topic><topic>Production costs</topic><topic>Seawater</topic><topic>Service life</topic><topic>Ultrastructure</topic><topic>Uranium</topic><topic>Uranium ores</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Xu, Lu</creatorcontrib><creatorcontrib>Ao, Junxuan</creatorcontrib><creatorcontrib>Liang, Yulin</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Wang, Yangjie</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>Ye, Feng</creatorcontrib><creatorcontrib>Li, Qingnuan</creatorcontrib><creatorcontrib>Guo, Xiaojing</creatorcontrib><creatorcontrib>Li, Jingye</creatorcontrib><creatorcontrib>Wang, Hengti</creatorcontrib><creatorcontrib>Ma, Shengqian</creatorcontrib><creatorcontrib>Ma, Hongjuan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiao</au><au>Xu, Lu</au><au>Ao, Junxuan</au><au>Liang, Yulin</au><au>Li, Cheng</au><au>Wang, Yangjie</au><au>Huang, Chen</au><au>Ye, Feng</au><au>Li, Qingnuan</au><au>Guo, Xiaojing</au><au>Li, Jingye</au><au>Wang, Hengti</au><au>Ma, Shengqian</au><au>Ma, Hongjuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-11-14</date><risdate>2020</risdate><volume>8</volume><issue>42</issue><spage>22032</spage><epage>22044</epage><pages>22032-22044</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Effectively addressing global warming requires a rapid transformation of the ways in which energy is consumed, and nuclear power produces very low lifecycle carbon emissions. Efficient uranium extraction from unconventional uranium ore sources, such as the ocean, can provide a stable and long-term supply of nuclear fuel for nuclear power plants. Herein, we report an interconnected open-pore architecture poly(amidoxime) (PAO) fiber with PAO nanoparticles and a nano-channel structure (AO-OpNpNc) using a top-down design. A high uranium adsorption capacity of 17.57 mg-U per g-adsorbent in natural seawater and ultra-long service life of at least 30 cycles were obtained, which are the highest values among currently available adsorbents to our knowledge. Extended X-ray absorption fine structure (EXAFS) fits and density functional theory (DFT) computational studies suggest that PAO-bound uranyl is a cooperative chelating model. More importantly, uranium production costs could be reduced to $80.70–86.25 per kg of uranium with this fiber, which is similar to the uranium spot price of $86.68 per kg of uranium and lower than the costs of all currently available adsorbents. The exceptional durability of the AO-OpNpNc fibers suggests the possibility of economically producing nuclear fuel from the ocean.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D0TA07180C</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3474-0659</orcidid><orcidid>https://orcid.org/0000-0001-8160-7194</orcidid><orcidid>https://orcid.org/0000-0002-1897-7069</orcidid><orcidid>https://orcid.org/0000-0001-8576-6432</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-11, Vol.8 (42), p.22032-22044 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2456855102 |
source | Royal Society of Chemistry |
subjects | Adsorbents Chelation Climate change Computer applications Density functional theory Fibers Fine structure Genetic transformation Global warming Nanochannels Nanoparticles Nuclear energy Nuclear fuels Nuclear power plants Power consumption Production costs Seawater Service life Ultrastructure Uranium Uranium ores X ray absorption |
title | Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20and%20economical%20uranium%20extraction%20from%20seawater%20via%20interconnected%20open-pore%20architecture%20poly(amidoxime)%20fiber&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xu,%20Xiao&rft.date=2020-11-14&rft.volume=8&rft.issue=42&rft.spage=22032&rft.epage=22044&rft.pages=22032-22044&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D0TA07180C&rft_dat=%3Cproquest_cross%3E2456855102%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456855102&rft_id=info:pmid/&rfr_iscdi=true |