Loading…

Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber

Effectively addressing global warming requires a rapid transformation of the ways in which energy is consumed, and nuclear power produces very low lifecycle carbon emissions. Efficient uranium extraction from unconventional uranium ore sources, such as the ocean, can provide a stable and long-term s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-11, Vol.8 (42), p.22032-22044
Main Authors: Xu, Xiao, Xu, Lu, Ao, Junxuan, Liang, Yulin, Li, Cheng, Wang, Yangjie, Huang, Chen, Ye, Feng, Li, Qingnuan, Guo, Xiaojing, Li, Jingye, Wang, Hengti, Ma, Shengqian, Ma, Hongjuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903
cites cdi_FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903
container_end_page 22044
container_issue 42
container_start_page 22032
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Xu, Xiao
Xu, Lu
Ao, Junxuan
Liang, Yulin
Li, Cheng
Wang, Yangjie
Huang, Chen
Ye, Feng
Li, Qingnuan
Guo, Xiaojing
Li, Jingye
Wang, Hengti
Ma, Shengqian
Ma, Hongjuan
description Effectively addressing global warming requires a rapid transformation of the ways in which energy is consumed, and nuclear power produces very low lifecycle carbon emissions. Efficient uranium extraction from unconventional uranium ore sources, such as the ocean, can provide a stable and long-term supply of nuclear fuel for nuclear power plants. Herein, we report an interconnected open-pore architecture poly(amidoxime) (PAO) fiber with PAO nanoparticles and a nano-channel structure (AO-OpNpNc) using a top-down design. A high uranium adsorption capacity of 17.57 mg-U per g-adsorbent in natural seawater and ultra-long service life of at least 30 cycles were obtained, which are the highest values among currently available adsorbents to our knowledge. Extended X-ray absorption fine structure (EXAFS) fits and density functional theory (DFT) computational studies suggest that PAO-bound uranyl is a cooperative chelating model. More importantly, uranium production costs could be reduced to $80.70–86.25 per kg of uranium with this fiber, which is similar to the uranium spot price of $86.68 per kg of uranium and lower than the costs of all currently available adsorbents. The exceptional durability of the AO-OpNpNc fibers suggests the possibility of economically producing nuclear fuel from the ocean.
doi_str_mv 10.1039/D0TA07180C
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2456855102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456855102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903</originalsourceid><addsrcrecordid>eNpFkE9LxDAQxYMouKx78RMEvKhQnTZN2xyX9S8seNk9lzSduFnapKatbr-9kRWdy7wZfvMGHiGXMdzFwMT9A2yWkMcFrE7ILAEOUZ6K7PRPF8U5WfT9HkIVAJkQMzJtm8HLnXnfUWlrispZ1xolGzp6ac3YUjwEQA3GWaq9a2mP8ksO6OmnkdTYoMKNRTVgTV2HNuqcRyq92pkhbMcwdK6ZrmVrancwLd5QbSr0F-RMy6bHxW-fk-3T42b1Eq3fnl9Xy3WkEpENUcLSnLOsUqg1VFoLrSouUiZUjIrVIudZFteImIIQea4rRJ6iSIta1JoJYHNydfTtvPsYsR_KvRu9DS_LJOVZwXkMSaBuj5Tyru896rLzppV-KmMof9It_9Nl30MDb1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456855102</pqid></control><display><type>article</type><title>Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber</title><source>Royal Society of Chemistry</source><creator>Xu, Xiao ; Xu, Lu ; Ao, Junxuan ; Liang, Yulin ; Li, Cheng ; Wang, Yangjie ; Huang, Chen ; Ye, Feng ; Li, Qingnuan ; Guo, Xiaojing ; Li, Jingye ; Wang, Hengti ; Ma, Shengqian ; Ma, Hongjuan</creator><creatorcontrib>Xu, Xiao ; Xu, Lu ; Ao, Junxuan ; Liang, Yulin ; Li, Cheng ; Wang, Yangjie ; Huang, Chen ; Ye, Feng ; Li, Qingnuan ; Guo, Xiaojing ; Li, Jingye ; Wang, Hengti ; Ma, Shengqian ; Ma, Hongjuan</creatorcontrib><description>Effectively addressing global warming requires a rapid transformation of the ways in which energy is consumed, and nuclear power produces very low lifecycle carbon emissions. Efficient uranium extraction from unconventional uranium ore sources, such as the ocean, can provide a stable and long-term supply of nuclear fuel for nuclear power plants. Herein, we report an interconnected open-pore architecture poly(amidoxime) (PAO) fiber with PAO nanoparticles and a nano-channel structure (AO-OpNpNc) using a top-down design. A high uranium adsorption capacity of 17.57 mg-U per g-adsorbent in natural seawater and ultra-long service life of at least 30 cycles were obtained, which are the highest values among currently available adsorbents to our knowledge. Extended X-ray absorption fine structure (EXAFS) fits and density functional theory (DFT) computational studies suggest that PAO-bound uranyl is a cooperative chelating model. More importantly, uranium production costs could be reduced to $80.70–86.25 per kg of uranium with this fiber, which is similar to the uranium spot price of $86.68 per kg of uranium and lower than the costs of all currently available adsorbents. The exceptional durability of the AO-OpNpNc fibers suggests the possibility of economically producing nuclear fuel from the ocean.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D0TA07180C</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorbents ; Chelation ; Climate change ; Computer applications ; Density functional theory ; Fibers ; Fine structure ; Genetic transformation ; Global warming ; Nanochannels ; Nanoparticles ; Nuclear energy ; Nuclear fuels ; Nuclear power plants ; Power consumption ; Production costs ; Seawater ; Service life ; Ultrastructure ; Uranium ; Uranium ores ; X ray absorption</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-11, Vol.8 (42), p.22032-22044</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903</citedby><cites>FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903</cites><orcidid>0000-0003-3474-0659 ; 0000-0001-8160-7194 ; 0000-0002-1897-7069 ; 0000-0001-8576-6432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Xu, Lu</creatorcontrib><creatorcontrib>Ao, Junxuan</creatorcontrib><creatorcontrib>Liang, Yulin</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Wang, Yangjie</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>Ye, Feng</creatorcontrib><creatorcontrib>Li, Qingnuan</creatorcontrib><creatorcontrib>Guo, Xiaojing</creatorcontrib><creatorcontrib>Li, Jingye</creatorcontrib><creatorcontrib>Wang, Hengti</creatorcontrib><creatorcontrib>Ma, Shengqian</creatorcontrib><creatorcontrib>Ma, Hongjuan</creatorcontrib><title>Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Effectively addressing global warming requires a rapid transformation of the ways in which energy is consumed, and nuclear power produces very low lifecycle carbon emissions. Efficient uranium extraction from unconventional uranium ore sources, such as the ocean, can provide a stable and long-term supply of nuclear fuel for nuclear power plants. Herein, we report an interconnected open-pore architecture poly(amidoxime) (PAO) fiber with PAO nanoparticles and a nano-channel structure (AO-OpNpNc) using a top-down design. A high uranium adsorption capacity of 17.57 mg-U per g-adsorbent in natural seawater and ultra-long service life of at least 30 cycles were obtained, which are the highest values among currently available adsorbents to our knowledge. Extended X-ray absorption fine structure (EXAFS) fits and density functional theory (DFT) computational studies suggest that PAO-bound uranyl is a cooperative chelating model. More importantly, uranium production costs could be reduced to $80.70–86.25 per kg of uranium with this fiber, which is similar to the uranium spot price of $86.68 per kg of uranium and lower than the costs of all currently available adsorbents. The exceptional durability of the AO-OpNpNc fibers suggests the possibility of economically producing nuclear fuel from the ocean.</description><subject>Adsorbents</subject><subject>Chelation</subject><subject>Climate change</subject><subject>Computer applications</subject><subject>Density functional theory</subject><subject>Fibers</subject><subject>Fine structure</subject><subject>Genetic transformation</subject><subject>Global warming</subject><subject>Nanochannels</subject><subject>Nanoparticles</subject><subject>Nuclear energy</subject><subject>Nuclear fuels</subject><subject>Nuclear power plants</subject><subject>Power consumption</subject><subject>Production costs</subject><subject>Seawater</subject><subject>Service life</subject><subject>Ultrastructure</subject><subject>Uranium</subject><subject>Uranium ores</subject><subject>X ray absorption</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LxDAQxYMouKx78RMEvKhQnTZN2xyX9S8seNk9lzSduFnapKatbr-9kRWdy7wZfvMGHiGXMdzFwMT9A2yWkMcFrE7ILAEOUZ6K7PRPF8U5WfT9HkIVAJkQMzJtm8HLnXnfUWlrispZ1xolGzp6ac3YUjwEQA3GWaq9a2mP8ksO6OmnkdTYoMKNRTVgTV2HNuqcRyq92pkhbMcwdK6ZrmVrancwLd5QbSr0F-RMy6bHxW-fk-3T42b1Eq3fnl9Xy3WkEpENUcLSnLOsUqg1VFoLrSouUiZUjIrVIudZFteImIIQea4rRJ6iSIta1JoJYHNydfTtvPsYsR_KvRu9DS_LJOVZwXkMSaBuj5Tyru896rLzppV-KmMof9It_9Nl30MDb1k</recordid><startdate>20201114</startdate><enddate>20201114</enddate><creator>Xu, Xiao</creator><creator>Xu, Lu</creator><creator>Ao, Junxuan</creator><creator>Liang, Yulin</creator><creator>Li, Cheng</creator><creator>Wang, Yangjie</creator><creator>Huang, Chen</creator><creator>Ye, Feng</creator><creator>Li, Qingnuan</creator><creator>Guo, Xiaojing</creator><creator>Li, Jingye</creator><creator>Wang, Hengti</creator><creator>Ma, Shengqian</creator><creator>Ma, Hongjuan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3474-0659</orcidid><orcidid>https://orcid.org/0000-0001-8160-7194</orcidid><orcidid>https://orcid.org/0000-0002-1897-7069</orcidid><orcidid>https://orcid.org/0000-0001-8576-6432</orcidid></search><sort><creationdate>20201114</creationdate><title>Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber</title><author>Xu, Xiao ; Xu, Lu ; Ao, Junxuan ; Liang, Yulin ; Li, Cheng ; Wang, Yangjie ; Huang, Chen ; Ye, Feng ; Li, Qingnuan ; Guo, Xiaojing ; Li, Jingye ; Wang, Hengti ; Ma, Shengqian ; Ma, Hongjuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorbents</topic><topic>Chelation</topic><topic>Climate change</topic><topic>Computer applications</topic><topic>Density functional theory</topic><topic>Fibers</topic><topic>Fine structure</topic><topic>Genetic transformation</topic><topic>Global warming</topic><topic>Nanochannels</topic><topic>Nanoparticles</topic><topic>Nuclear energy</topic><topic>Nuclear fuels</topic><topic>Nuclear power plants</topic><topic>Power consumption</topic><topic>Production costs</topic><topic>Seawater</topic><topic>Service life</topic><topic>Ultrastructure</topic><topic>Uranium</topic><topic>Uranium ores</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Xu, Lu</creatorcontrib><creatorcontrib>Ao, Junxuan</creatorcontrib><creatorcontrib>Liang, Yulin</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Wang, Yangjie</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>Ye, Feng</creatorcontrib><creatorcontrib>Li, Qingnuan</creatorcontrib><creatorcontrib>Guo, Xiaojing</creatorcontrib><creatorcontrib>Li, Jingye</creatorcontrib><creatorcontrib>Wang, Hengti</creatorcontrib><creatorcontrib>Ma, Shengqian</creatorcontrib><creatorcontrib>Ma, Hongjuan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiao</au><au>Xu, Lu</au><au>Ao, Junxuan</au><au>Liang, Yulin</au><au>Li, Cheng</au><au>Wang, Yangjie</au><au>Huang, Chen</au><au>Ye, Feng</au><au>Li, Qingnuan</au><au>Guo, Xiaojing</au><au>Li, Jingye</au><au>Wang, Hengti</au><au>Ma, Shengqian</au><au>Ma, Hongjuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-11-14</date><risdate>2020</risdate><volume>8</volume><issue>42</issue><spage>22032</spage><epage>22044</epage><pages>22032-22044</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Effectively addressing global warming requires a rapid transformation of the ways in which energy is consumed, and nuclear power produces very low lifecycle carbon emissions. Efficient uranium extraction from unconventional uranium ore sources, such as the ocean, can provide a stable and long-term supply of nuclear fuel for nuclear power plants. Herein, we report an interconnected open-pore architecture poly(amidoxime) (PAO) fiber with PAO nanoparticles and a nano-channel structure (AO-OpNpNc) using a top-down design. A high uranium adsorption capacity of 17.57 mg-U per g-adsorbent in natural seawater and ultra-long service life of at least 30 cycles were obtained, which are the highest values among currently available adsorbents to our knowledge. Extended X-ray absorption fine structure (EXAFS) fits and density functional theory (DFT) computational studies suggest that PAO-bound uranyl is a cooperative chelating model. More importantly, uranium production costs could be reduced to $80.70–86.25 per kg of uranium with this fiber, which is similar to the uranium spot price of $86.68 per kg of uranium and lower than the costs of all currently available adsorbents. The exceptional durability of the AO-OpNpNc fibers suggests the possibility of economically producing nuclear fuel from the ocean.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D0TA07180C</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3474-0659</orcidid><orcidid>https://orcid.org/0000-0001-8160-7194</orcidid><orcidid>https://orcid.org/0000-0002-1897-7069</orcidid><orcidid>https://orcid.org/0000-0001-8576-6432</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-11, Vol.8 (42), p.22032-22044
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2456855102
source Royal Society of Chemistry
subjects Adsorbents
Chelation
Climate change
Computer applications
Density functional theory
Fibers
Fine structure
Genetic transformation
Global warming
Nanochannels
Nanoparticles
Nuclear energy
Nuclear fuels
Nuclear power plants
Power consumption
Production costs
Seawater
Service life
Ultrastructure
Uranium
Uranium ores
X ray absorption
title Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20and%20economical%20uranium%20extraction%20from%20seawater%20via%20interconnected%20open-pore%20architecture%20poly(amidoxime)%20fiber&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xu,%20Xiao&rft.date=2020-11-14&rft.volume=8&rft.issue=42&rft.spage=22032&rft.epage=22044&rft.pages=22032-22044&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D0TA07180C&rft_dat=%3Cproquest_cross%3E2456855102%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-2347536bceff0bff9fcb59439c1ec3d975661deee409977fbee54e948d9df3903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456855102&rft_id=info:pmid/&rfr_iscdi=true