Loading…
Smart Distributed Energy Storage Controller (smartDESC)
While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic d...
Saved in:
Published in: | Energy (Oxford) 2020-11, Vol.210, p.118500, Article 118500 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3 |
container_end_page | |
container_issue | |
container_start_page | 118500 |
container_title | Energy (Oxford) |
container_volume | 210 |
creator | Malandra, F. Kizilkale, A.C. Sirois, F. Sansò, B. Anjos, M.F. Bernier, M. Gendreau, M. Malhamé, R.P. |
description | While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures), as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture, together with an associated simulator and simulation results.
•Energy storage potential of Electric Water Heaters is used for load balancing.•This approach permits to increase the penetration of renewable energy sources.•Realistic data in terms of wind forecast and communication infrastructure were used.•Mean-field theory allows a scalable approach to the decentralized control of loads.•Simulation results show benefits for both power operators and consumers. |
doi_str_mv | 10.1016/j.energy.2020.118500 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2456877684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036054422031608X</els_id><sourcerecordid>2456877684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3</originalsourceid><addsrcrecordid>eNp9UM1LwzAUD6LgnP4HHgpe9ND5kjRNehGkqx8w8LDdQ5e8jpbZzCQT9t_bWs-eHjx-34TcUlhQoPljt8Ae_e60YMCGF1UC4IzMqJI8zaUS52QGPIdUZBm7JFchdAAgVFHMiFx_1j4myzZE326PEW1S_Wol6-h8vcOkdH30br9Hn9yHEbys1uXDNblo6n3Am787J5uXalO-pauP1_fyeZUariCmihY1Y2AMSjZGFY3iAqVh27oxueLKMmtFDrIwlgMVTVFYagSvmRCINZ-Tu0n24N3XEUPUnTv6fnDULBO5kjJX2YDKJpTxLgSPjT74doh60hT0aKs7PS2kx4X0tNBAe5poOBT4btHrYFrsDdrWo4nauvZ_gR-mBm8u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456877684</pqid></control><display><type>article</type><title>Smart Distributed Energy Storage Controller (smartDESC)</title><source>ScienceDirect Freedom Collection</source><creator>Malandra, F. ; Kizilkale, A.C. ; Sirois, F. ; Sansò, B. ; Anjos, M.F. ; Bernier, M. ; Gendreau, M. ; Malhamé, R.P.</creator><creatorcontrib>Malandra, F. ; Kizilkale, A.C. ; Sirois, F. ; Sansò, B. ; Anjos, M.F. ; Bernier, M. ; Gendreau, M. ; Malhamé, R.P.</creatorcontrib><description>While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures), as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture, together with an associated simulator and simulation results.
•Energy storage potential of Electric Water Heaters is used for load balancing.•This approach permits to increase the penetration of renewable energy sources.•Realistic data in terms of wind forecast and communication infrastructure were used.•Mean-field theory allows a scalable approach to the decentralized control of loads.•Simulation results show benefits for both power operators and consumers.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.118500</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Advanced metering infrastructure ; Control theory ; Decentralized control ; Distributed control ; Distributed generation ; Electric water heater ; Electrical loads ; Energy storage ; Game theory ; Mathematical analysis ; Mean-field ; Optimization ; Renewable energy ; Smart grid ; Stochasticity ; Thermal analysis</subject><ispartof>Energy (Oxford), 2020-11, Vol.210, p.118500, Article 118500</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3</citedby><cites>FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Malandra, F.</creatorcontrib><creatorcontrib>Kizilkale, A.C.</creatorcontrib><creatorcontrib>Sirois, F.</creatorcontrib><creatorcontrib>Sansò, B.</creatorcontrib><creatorcontrib>Anjos, M.F.</creatorcontrib><creatorcontrib>Bernier, M.</creatorcontrib><creatorcontrib>Gendreau, M.</creatorcontrib><creatorcontrib>Malhamé, R.P.</creatorcontrib><title>Smart Distributed Energy Storage Controller (smartDESC)</title><title>Energy (Oxford)</title><description>While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures), as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture, together with an associated simulator and simulation results.
•Energy storage potential of Electric Water Heaters is used for load balancing.•This approach permits to increase the penetration of renewable energy sources.•Realistic data in terms of wind forecast and communication infrastructure were used.•Mean-field theory allows a scalable approach to the decentralized control of loads.•Simulation results show benefits for both power operators and consumers.</description><subject>Advanced metering infrastructure</subject><subject>Control theory</subject><subject>Decentralized control</subject><subject>Distributed control</subject><subject>Distributed generation</subject><subject>Electric water heater</subject><subject>Electrical loads</subject><subject>Energy storage</subject><subject>Game theory</subject><subject>Mathematical analysis</subject><subject>Mean-field</subject><subject>Optimization</subject><subject>Renewable energy</subject><subject>Smart grid</subject><subject>Stochasticity</subject><subject>Thermal analysis</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UM1LwzAUD6LgnP4HHgpe9ND5kjRNehGkqx8w8LDdQ5e8jpbZzCQT9t_bWs-eHjx-34TcUlhQoPljt8Ae_e60YMCGF1UC4IzMqJI8zaUS52QGPIdUZBm7JFchdAAgVFHMiFx_1j4myzZE326PEW1S_Wol6-h8vcOkdH30br9Hn9yHEbys1uXDNblo6n3Am787J5uXalO-pauP1_fyeZUariCmihY1Y2AMSjZGFY3iAqVh27oxueLKMmtFDrIwlgMVTVFYagSvmRCINZ-Tu0n24N3XEUPUnTv6fnDULBO5kjJX2YDKJpTxLgSPjT74doh60hT0aKs7PS2kx4X0tNBAe5poOBT4btHrYFrsDdrWo4nauvZ_gR-mBm8u</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Malandra, F.</creator><creator>Kizilkale, A.C.</creator><creator>Sirois, F.</creator><creator>Sansò, B.</creator><creator>Anjos, M.F.</creator><creator>Bernier, M.</creator><creator>Gendreau, M.</creator><creator>Malhamé, R.P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20201101</creationdate><title>Smart Distributed Energy Storage Controller (smartDESC)</title><author>Malandra, F. ; Kizilkale, A.C. ; Sirois, F. ; Sansò, B. ; Anjos, M.F. ; Bernier, M. ; Gendreau, M. ; Malhamé, R.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced metering infrastructure</topic><topic>Control theory</topic><topic>Decentralized control</topic><topic>Distributed control</topic><topic>Distributed generation</topic><topic>Electric water heater</topic><topic>Electrical loads</topic><topic>Energy storage</topic><topic>Game theory</topic><topic>Mathematical analysis</topic><topic>Mean-field</topic><topic>Optimization</topic><topic>Renewable energy</topic><topic>Smart grid</topic><topic>Stochasticity</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malandra, F.</creatorcontrib><creatorcontrib>Kizilkale, A.C.</creatorcontrib><creatorcontrib>Sirois, F.</creatorcontrib><creatorcontrib>Sansò, B.</creatorcontrib><creatorcontrib>Anjos, M.F.</creatorcontrib><creatorcontrib>Bernier, M.</creatorcontrib><creatorcontrib>Gendreau, M.</creatorcontrib><creatorcontrib>Malhamé, R.P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malandra, F.</au><au>Kizilkale, A.C.</au><au>Sirois, F.</au><au>Sansò, B.</au><au>Anjos, M.F.</au><au>Bernier, M.</au><au>Gendreau, M.</au><au>Malhamé, R.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Distributed Energy Storage Controller (smartDESC)</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>210</volume><spage>118500</spage><pages>118500-</pages><artnum>118500</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures), as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture, together with an associated simulator and simulation results.
•Energy storage potential of Electric Water Heaters is used for load balancing.•This approach permits to increase the penetration of renewable energy sources.•Realistic data in terms of wind forecast and communication infrastructure were used.•Mean-field theory allows a scalable approach to the decentralized control of loads.•Simulation results show benefits for both power operators and consumers.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.118500</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2020-11, Vol.210, p.118500, Article 118500 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2456877684 |
source | ScienceDirect Freedom Collection |
subjects | Advanced metering infrastructure Control theory Decentralized control Distributed control Distributed generation Electric water heater Electrical loads Energy storage Game theory Mathematical analysis Mean-field Optimization Renewable energy Smart grid Stochasticity Thermal analysis |
title | Smart Distributed Energy Storage Controller (smartDESC) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Distributed%20Energy%20Storage%20Controller%20(smartDESC)&rft.jtitle=Energy%20(Oxford)&rft.au=Malandra,%20F.&rft.date=2020-11-01&rft.volume=210&rft.spage=118500&rft.pages=118500-&rft.artnum=118500&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.118500&rft_dat=%3Cproquest_cross%3E2456877684%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456877684&rft_id=info:pmid/&rfr_iscdi=true |