Loading…

Smart Distributed Energy Storage Controller (smartDESC)

While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic d...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2020-11, Vol.210, p.118500, Article 118500
Main Authors: Malandra, F., Kizilkale, A.C., Sirois, F., Sansò, B., Anjos, M.F., Bernier, M., Gendreau, M., Malhamé, R.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3
cites cdi_FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3
container_end_page
container_issue
container_start_page 118500
container_title Energy (Oxford)
container_volume 210
creator Malandra, F.
Kizilkale, A.C.
Sirois, F.
Sansò, B.
Anjos, M.F.
Bernier, M.
Gendreau, M.
Malhamé, R.P.
description While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures), as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture, together with an associated simulator and simulation results. •Energy storage potential of Electric Water Heaters is used for load balancing.•This approach permits to increase the penetration of renewable energy sources.•Realistic data in terms of wind forecast and communication infrastructure were used.•Mean-field theory allows a scalable approach to the decentralized control of loads.•Simulation results show benefits for both power operators and consumers.
doi_str_mv 10.1016/j.energy.2020.118500
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2456877684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036054422031608X</els_id><sourcerecordid>2456877684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3</originalsourceid><addsrcrecordid>eNp9UM1LwzAUD6LgnP4HHgpe9ND5kjRNehGkqx8w8LDdQ5e8jpbZzCQT9t_bWs-eHjx-34TcUlhQoPljt8Ae_e60YMCGF1UC4IzMqJI8zaUS52QGPIdUZBm7JFchdAAgVFHMiFx_1j4myzZE326PEW1S_Wol6-h8vcOkdH30br9Hn9yHEbys1uXDNblo6n3Am787J5uXalO-pauP1_fyeZUariCmihY1Y2AMSjZGFY3iAqVh27oxueLKMmtFDrIwlgMVTVFYagSvmRCINZ-Tu0n24N3XEUPUnTv6fnDULBO5kjJX2YDKJpTxLgSPjT74doh60hT0aKs7PS2kx4X0tNBAe5poOBT4btHrYFrsDdrWo4nauvZ_gR-mBm8u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456877684</pqid></control><display><type>article</type><title>Smart Distributed Energy Storage Controller (smartDESC)</title><source>ScienceDirect Freedom Collection</source><creator>Malandra, F. ; Kizilkale, A.C. ; Sirois, F. ; Sansò, B. ; Anjos, M.F. ; Bernier, M. ; Gendreau, M. ; Malhamé, R.P.</creator><creatorcontrib>Malandra, F. ; Kizilkale, A.C. ; Sirois, F. ; Sansò, B. ; Anjos, M.F. ; Bernier, M. ; Gendreau, M. ; Malhamé, R.P.</creatorcontrib><description>While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures), as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture, together with an associated simulator and simulation results. •Energy storage potential of Electric Water Heaters is used for load balancing.•This approach permits to increase the penetration of renewable energy sources.•Realistic data in terms of wind forecast and communication infrastructure were used.•Mean-field theory allows a scalable approach to the decentralized control of loads.•Simulation results show benefits for both power operators and consumers.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.118500</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Advanced metering infrastructure ; Control theory ; Decentralized control ; Distributed control ; Distributed generation ; Electric water heater ; Electrical loads ; Energy storage ; Game theory ; Mathematical analysis ; Mean-field ; Optimization ; Renewable energy ; Smart grid ; Stochasticity ; Thermal analysis</subject><ispartof>Energy (Oxford), 2020-11, Vol.210, p.118500, Article 118500</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3</citedby><cites>FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Malandra, F.</creatorcontrib><creatorcontrib>Kizilkale, A.C.</creatorcontrib><creatorcontrib>Sirois, F.</creatorcontrib><creatorcontrib>Sansò, B.</creatorcontrib><creatorcontrib>Anjos, M.F.</creatorcontrib><creatorcontrib>Bernier, M.</creatorcontrib><creatorcontrib>Gendreau, M.</creatorcontrib><creatorcontrib>Malhamé, R.P.</creatorcontrib><title>Smart Distributed Energy Storage Controller (smartDESC)</title><title>Energy (Oxford)</title><description>While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures), as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture, together with an associated simulator and simulation results. •Energy storage potential of Electric Water Heaters is used for load balancing.•This approach permits to increase the penetration of renewable energy sources.•Realistic data in terms of wind forecast and communication infrastructure were used.•Mean-field theory allows a scalable approach to the decentralized control of loads.•Simulation results show benefits for both power operators and consumers.</description><subject>Advanced metering infrastructure</subject><subject>Control theory</subject><subject>Decentralized control</subject><subject>Distributed control</subject><subject>Distributed generation</subject><subject>Electric water heater</subject><subject>Electrical loads</subject><subject>Energy storage</subject><subject>Game theory</subject><subject>Mathematical analysis</subject><subject>Mean-field</subject><subject>Optimization</subject><subject>Renewable energy</subject><subject>Smart grid</subject><subject>Stochasticity</subject><subject>Thermal analysis</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UM1LwzAUD6LgnP4HHgpe9ND5kjRNehGkqx8w8LDdQ5e8jpbZzCQT9t_bWs-eHjx-34TcUlhQoPljt8Ae_e60YMCGF1UC4IzMqJI8zaUS52QGPIdUZBm7JFchdAAgVFHMiFx_1j4myzZE326PEW1S_Wol6-h8vcOkdH30br9Hn9yHEbys1uXDNblo6n3Am787J5uXalO-pauP1_fyeZUariCmihY1Y2AMSjZGFY3iAqVh27oxueLKMmtFDrIwlgMVTVFYagSvmRCINZ-Tu0n24N3XEUPUnTv6fnDULBO5kjJX2YDKJpTxLgSPjT74doh60hT0aKs7PS2kx4X0tNBAe5poOBT4btHrYFrsDdrWo4nauvZ_gR-mBm8u</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Malandra, F.</creator><creator>Kizilkale, A.C.</creator><creator>Sirois, F.</creator><creator>Sansò, B.</creator><creator>Anjos, M.F.</creator><creator>Bernier, M.</creator><creator>Gendreau, M.</creator><creator>Malhamé, R.P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20201101</creationdate><title>Smart Distributed Energy Storage Controller (smartDESC)</title><author>Malandra, F. ; Kizilkale, A.C. ; Sirois, F. ; Sansò, B. ; Anjos, M.F. ; Bernier, M. ; Gendreau, M. ; Malhamé, R.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced metering infrastructure</topic><topic>Control theory</topic><topic>Decentralized control</topic><topic>Distributed control</topic><topic>Distributed generation</topic><topic>Electric water heater</topic><topic>Electrical loads</topic><topic>Energy storage</topic><topic>Game theory</topic><topic>Mathematical analysis</topic><topic>Mean-field</topic><topic>Optimization</topic><topic>Renewable energy</topic><topic>Smart grid</topic><topic>Stochasticity</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malandra, F.</creatorcontrib><creatorcontrib>Kizilkale, A.C.</creatorcontrib><creatorcontrib>Sirois, F.</creatorcontrib><creatorcontrib>Sansò, B.</creatorcontrib><creatorcontrib>Anjos, M.F.</creatorcontrib><creatorcontrib>Bernier, M.</creatorcontrib><creatorcontrib>Gendreau, M.</creatorcontrib><creatorcontrib>Malhamé, R.P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malandra, F.</au><au>Kizilkale, A.C.</au><au>Sirois, F.</au><au>Sansò, B.</au><au>Anjos, M.F.</au><au>Bernier, M.</au><au>Gendreau, M.</au><au>Malhamé, R.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Distributed Energy Storage Controller (smartDESC)</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>210</volume><spage>118500</spage><pages>118500-</pages><artnum>118500</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures), as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture, together with an associated simulator and simulation results. •Energy storage potential of Electric Water Heaters is used for load balancing.•This approach permits to increase the penetration of renewable energy sources.•Realistic data in terms of wind forecast and communication infrastructure were used.•Mean-field theory allows a scalable approach to the decentralized control of loads.•Simulation results show benefits for both power operators and consumers.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.118500</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2020-11, Vol.210, p.118500, Article 118500
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2456877684
source ScienceDirect Freedom Collection
subjects Advanced metering infrastructure
Control theory
Decentralized control
Distributed control
Distributed generation
Electric water heater
Electrical loads
Energy storage
Game theory
Mathematical analysis
Mean-field
Optimization
Renewable energy
Smart grid
Stochasticity
Thermal analysis
title Smart Distributed Energy Storage Controller (smartDESC)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Distributed%20Energy%20Storage%20Controller%20(smartDESC)&rft.jtitle=Energy%20(Oxford)&rft.au=Malandra,%20F.&rft.date=2020-11-01&rft.volume=210&rft.spage=118500&rft.pages=118500-&rft.artnum=118500&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.118500&rft_dat=%3Cproquest_cross%3E2456877684%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-819a220cce7210165f835e7c2bafc6838d2dd56079cd3015f99d1c53a255eea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456877684&rft_id=info:pmid/&rfr_iscdi=true