Loading…
Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes
The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, t...
Saved in:
Published in: | Advanced functional materials 2020-11, Vol.30 (45), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 45 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Sambri, Alessia Scuderi, Mario Guarino, Anita Gennaro, Emiliano Di Erlandsen, Ricci Dahm, Rasmus T. Bjørlig, Anders V. Christensen, Dennis V. Capua, Roberto Di Ventura, Bartolomeo Della Uccio, Umberto Scotti di Mirabella, Salvatore Nicotra, Giuseppe Spinella, Corrado Jespersen, Thomas S. Granozio, Fabio Miletto |
description | The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, the samples are 3D objects with thickness in the mm range. This prevented researchers so far from adopting strategies that are only viable for fully 2D materials, or from effectively exploiting degrees of freedom related to strain, strain gradient and curvature. Here a method based on pure strain engineering for obtaining freestanding LaAlO3/SrTiO3 membranes with micrometer lateral dimensions is demonstrated. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each layer showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes transferred on silicon chips. The samples exhibit metallic conductivity and electrostatic field effect like 2D‐electron systems in bulk heterostructures. The results open a new path for adding oxide functionalities into semiconductor electronics, potentially allowing for ultra‐low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on‐chip straintronics.
The realization of freestanding, curved, metallic LaAlO3/SrTiO3 heterostructures is reported. An unprecedented fabrication concept based on pure strain engineering is demonstrated. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes after transfer on silicon chips. The results open a new path for adding oxide functionality into semiconductor electronics, including superconducting transistors arrays and on‐chip straintronics. |
doi_str_mv | 10.1002/adfm.201909964 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2457212350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457212350</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1484-9e1060ee9eed70ba1aa0a325b757238fc063b1af196de0a642ee6353538b33e93</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFavngNeTTuzk2yyx1CNCi09tIK3ZdNMJCUfddMivfUn-Bv9JaZUyhxmXnh4Bx4h7hFGCCDHNi_qkQTUoLUKLsQAFSqfQMaX5xs_rsVN160BMIooGAi94Kr4Pfykras5f_QmbZPvVtuy-fSmNqnmNF64ZTknb1auXNuDM64zZxvubsVVYauO7_73ULynz8vJqz-dv7xNkqm_wSAOfM0ICpg1cx5BZtFasCTDLAojSXGxAkUZ2gK1yhmsCiSzorCfOCNiTUPxcOrduPZrx93WrNuda_qXRgZ9B0oKoaf0ifouK96bjStr6_YGwRzdmKMbc3Zjkqd0dk70B3LkWhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457212350</pqid></control><display><type>article</type><title>Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sambri, Alessia ; Scuderi, Mario ; Guarino, Anita ; Gennaro, Emiliano Di ; Erlandsen, Ricci ; Dahm, Rasmus T. ; Bjørlig, Anders V. ; Christensen, Dennis V. ; Capua, Roberto Di ; Ventura, Bartolomeo Della ; Uccio, Umberto Scotti di ; Mirabella, Salvatore ; Nicotra, Giuseppe ; Spinella, Corrado ; Jespersen, Thomas S. ; Granozio, Fabio Miletto</creator><creatorcontrib>Sambri, Alessia ; Scuderi, Mario ; Guarino, Anita ; Gennaro, Emiliano Di ; Erlandsen, Ricci ; Dahm, Rasmus T. ; Bjørlig, Anders V. ; Christensen, Dennis V. ; Capua, Roberto Di ; Ventura, Bartolomeo Della ; Uccio, Umberto Scotti di ; Mirabella, Salvatore ; Nicotra, Giuseppe ; Spinella, Corrado ; Jespersen, Thomas S. ; Granozio, Fabio Miletto</creatorcontrib><description>The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, the samples are 3D objects with thickness in the mm range. This prevented researchers so far from adopting strategies that are only viable for fully 2D materials, or from effectively exploiting degrees of freedom related to strain, strain gradient and curvature. Here a method based on pure strain engineering for obtaining freestanding LaAlO3/SrTiO3 membranes with micrometer lateral dimensions is demonstrated. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each layer showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes transferred on silicon chips. The samples exhibit metallic conductivity and electrostatic field effect like 2D‐electron systems in bulk heterostructures. The results open a new path for adding oxide functionalities into semiconductor electronics, potentially allowing for ultra‐low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on‐chip straintronics.
The realization of freestanding, curved, metallic LaAlO3/SrTiO3 heterostructures is reported. An unprecedented fabrication concept based on pure strain engineering is demonstrated. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes after transfer on silicon chips. The results open a new path for adding oxide functionality into semiconductor electronics, including superconducting transistors arrays and on‐chip straintronics.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201909964</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Compressive properties ; Curvature ; Electric fields ; Electron gas ; Electronic devices ; Ferroelectricity ; freestanding membranes ; Heterostructures ; LaAlO 3/SrTiO 3 ; Low voltage ; Materials science ; Membranes ; oxide heterostructures ; oxides on silicon ; strain engineering ; strain gradient ; Strontium titanates ; Tensile strain ; Transistors ; Two dimensional materials</subject><ispartof>Advanced functional materials, 2020-11, Vol.30 (45), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9417-7848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sambri, Alessia</creatorcontrib><creatorcontrib>Scuderi, Mario</creatorcontrib><creatorcontrib>Guarino, Anita</creatorcontrib><creatorcontrib>Gennaro, Emiliano Di</creatorcontrib><creatorcontrib>Erlandsen, Ricci</creatorcontrib><creatorcontrib>Dahm, Rasmus T.</creatorcontrib><creatorcontrib>Bjørlig, Anders V.</creatorcontrib><creatorcontrib>Christensen, Dennis V.</creatorcontrib><creatorcontrib>Capua, Roberto Di</creatorcontrib><creatorcontrib>Ventura, Bartolomeo Della</creatorcontrib><creatorcontrib>Uccio, Umberto Scotti di</creatorcontrib><creatorcontrib>Mirabella, Salvatore</creatorcontrib><creatorcontrib>Nicotra, Giuseppe</creatorcontrib><creatorcontrib>Spinella, Corrado</creatorcontrib><creatorcontrib>Jespersen, Thomas S.</creatorcontrib><creatorcontrib>Granozio, Fabio Miletto</creatorcontrib><title>Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes</title><title>Advanced functional materials</title><description>The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, the samples are 3D objects with thickness in the mm range. This prevented researchers so far from adopting strategies that are only viable for fully 2D materials, or from effectively exploiting degrees of freedom related to strain, strain gradient and curvature. Here a method based on pure strain engineering for obtaining freestanding LaAlO3/SrTiO3 membranes with micrometer lateral dimensions is demonstrated. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each layer showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes transferred on silicon chips. The samples exhibit metallic conductivity and electrostatic field effect like 2D‐electron systems in bulk heterostructures. The results open a new path for adding oxide functionalities into semiconductor electronics, potentially allowing for ultra‐low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on‐chip straintronics.
The realization of freestanding, curved, metallic LaAlO3/SrTiO3 heterostructures is reported. An unprecedented fabrication concept based on pure strain engineering is demonstrated. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes after transfer on silicon chips. The results open a new path for adding oxide functionality into semiconductor electronics, including superconducting transistors arrays and on‐chip straintronics.</description><subject>Compressive properties</subject><subject>Curvature</subject><subject>Electric fields</subject><subject>Electron gas</subject><subject>Electronic devices</subject><subject>Ferroelectricity</subject><subject>freestanding membranes</subject><subject>Heterostructures</subject><subject>LaAlO 3/SrTiO 3</subject><subject>Low voltage</subject><subject>Materials science</subject><subject>Membranes</subject><subject>oxide heterostructures</subject><subject>oxides on silicon</subject><subject>strain engineering</subject><subject>strain gradient</subject><subject>Strontium titanates</subject><subject>Tensile strain</subject><subject>Transistors</subject><subject>Two dimensional materials</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFavngNeTTuzk2yyx1CNCi09tIK3ZdNMJCUfddMivfUn-Bv9JaZUyhxmXnh4Bx4h7hFGCCDHNi_qkQTUoLUKLsQAFSqfQMaX5xs_rsVN160BMIooGAi94Kr4Pfykras5f_QmbZPvVtuy-fSmNqnmNF64ZTknb1auXNuDM64zZxvubsVVYauO7_73ULynz8vJqz-dv7xNkqm_wSAOfM0ICpg1cx5BZtFasCTDLAojSXGxAkUZ2gK1yhmsCiSzorCfOCNiTUPxcOrduPZrx93WrNuda_qXRgZ9B0oKoaf0ifouK96bjStr6_YGwRzdmKMbc3Zjkqd0dk70B3LkWhs</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Sambri, Alessia</creator><creator>Scuderi, Mario</creator><creator>Guarino, Anita</creator><creator>Gennaro, Emiliano Di</creator><creator>Erlandsen, Ricci</creator><creator>Dahm, Rasmus T.</creator><creator>Bjørlig, Anders V.</creator><creator>Christensen, Dennis V.</creator><creator>Capua, Roberto Di</creator><creator>Ventura, Bartolomeo Della</creator><creator>Uccio, Umberto Scotti di</creator><creator>Mirabella, Salvatore</creator><creator>Nicotra, Giuseppe</creator><creator>Spinella, Corrado</creator><creator>Jespersen, Thomas S.</creator><creator>Granozio, Fabio Miletto</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9417-7848</orcidid></search><sort><creationdate>20201101</creationdate><title>Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes</title><author>Sambri, Alessia ; Scuderi, Mario ; Guarino, Anita ; Gennaro, Emiliano Di ; Erlandsen, Ricci ; Dahm, Rasmus T. ; Bjørlig, Anders V. ; Christensen, Dennis V. ; Capua, Roberto Di ; Ventura, Bartolomeo Della ; Uccio, Umberto Scotti di ; Mirabella, Salvatore ; Nicotra, Giuseppe ; Spinella, Corrado ; Jespersen, Thomas S. ; Granozio, Fabio Miletto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1484-9e1060ee9eed70ba1aa0a325b757238fc063b1af196de0a642ee6353538b33e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressive properties</topic><topic>Curvature</topic><topic>Electric fields</topic><topic>Electron gas</topic><topic>Electronic devices</topic><topic>Ferroelectricity</topic><topic>freestanding membranes</topic><topic>Heterostructures</topic><topic>LaAlO 3/SrTiO 3</topic><topic>Low voltage</topic><topic>Materials science</topic><topic>Membranes</topic><topic>oxide heterostructures</topic><topic>oxides on silicon</topic><topic>strain engineering</topic><topic>strain gradient</topic><topic>Strontium titanates</topic><topic>Tensile strain</topic><topic>Transistors</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sambri, Alessia</creatorcontrib><creatorcontrib>Scuderi, Mario</creatorcontrib><creatorcontrib>Guarino, Anita</creatorcontrib><creatorcontrib>Gennaro, Emiliano Di</creatorcontrib><creatorcontrib>Erlandsen, Ricci</creatorcontrib><creatorcontrib>Dahm, Rasmus T.</creatorcontrib><creatorcontrib>Bjørlig, Anders V.</creatorcontrib><creatorcontrib>Christensen, Dennis V.</creatorcontrib><creatorcontrib>Capua, Roberto Di</creatorcontrib><creatorcontrib>Ventura, Bartolomeo Della</creatorcontrib><creatorcontrib>Uccio, Umberto Scotti di</creatorcontrib><creatorcontrib>Mirabella, Salvatore</creatorcontrib><creatorcontrib>Nicotra, Giuseppe</creatorcontrib><creatorcontrib>Spinella, Corrado</creatorcontrib><creatorcontrib>Jespersen, Thomas S.</creatorcontrib><creatorcontrib>Granozio, Fabio Miletto</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sambri, Alessia</au><au>Scuderi, Mario</au><au>Guarino, Anita</au><au>Gennaro, Emiliano Di</au><au>Erlandsen, Ricci</au><au>Dahm, Rasmus T.</au><au>Bjørlig, Anders V.</au><au>Christensen, Dennis V.</au><au>Capua, Roberto Di</au><au>Ventura, Bartolomeo Della</au><au>Uccio, Umberto Scotti di</au><au>Mirabella, Salvatore</au><au>Nicotra, Giuseppe</au><au>Spinella, Corrado</au><au>Jespersen, Thomas S.</au><au>Granozio, Fabio Miletto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes</atitle><jtitle>Advanced functional materials</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>30</volume><issue>45</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, the samples are 3D objects with thickness in the mm range. This prevented researchers so far from adopting strategies that are only viable for fully 2D materials, or from effectively exploiting degrees of freedom related to strain, strain gradient and curvature. Here a method based on pure strain engineering for obtaining freestanding LaAlO3/SrTiO3 membranes with micrometer lateral dimensions is demonstrated. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each layer showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes transferred on silicon chips. The samples exhibit metallic conductivity and electrostatic field effect like 2D‐electron systems in bulk heterostructures. The results open a new path for adding oxide functionalities into semiconductor electronics, potentially allowing for ultra‐low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on‐chip straintronics.
The realization of freestanding, curved, metallic LaAlO3/SrTiO3 heterostructures is reported. An unprecedented fabrication concept based on pure strain engineering is demonstrated. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes after transfer on silicon chips. The results open a new path for adding oxide functionality into semiconductor electronics, including superconducting transistors arrays and on‐chip straintronics.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201909964</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9417-7848</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-11, Vol.30 (45), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2457212350 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Compressive properties Curvature Electric fields Electron gas Electronic devices Ferroelectricity freestanding membranes Heterostructures LaAlO 3/SrTiO 3 Low voltage Materials science Membranes oxide heterostructures oxides on silicon strain engineering strain gradient Strontium titanates Tensile strain Transistors Two dimensional materials |
title | Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Formed,%20Conducting%20LaAlO3/SrTiO3%20Micro%E2%80%90Membranes&rft.jtitle=Advanced%20functional%20materials&rft.au=Sambri,%20Alessia&rft.date=2020-11-01&rft.volume=30&rft.issue=45&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201909964&rft_dat=%3Cproquest_wiley%3E2457212350%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1484-9e1060ee9eed70ba1aa0a325b757238fc063b1af196de0a642ee6353538b33e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457212350&rft_id=info:pmid/&rfr_iscdi=true |