Loading…

Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes

The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, t...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2020-11, Vol.30 (45), p.n/a
Main Authors: Sambri, Alessia, Scuderi, Mario, Guarino, Anita, Gennaro, Emiliano Di, Erlandsen, Ricci, Dahm, Rasmus T., Bjørlig, Anders V., Christensen, Dennis V., Capua, Roberto Di, Ventura, Bartolomeo Della, Uccio, Umberto Scotti di, Mirabella, Salvatore, Nicotra, Giuseppe, Spinella, Corrado, Jespersen, Thomas S., Granozio, Fabio Miletto
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 45
container_start_page
container_title Advanced functional materials
container_volume 30
creator Sambri, Alessia
Scuderi, Mario
Guarino, Anita
Gennaro, Emiliano Di
Erlandsen, Ricci
Dahm, Rasmus T.
Bjørlig, Anders V.
Christensen, Dennis V.
Capua, Roberto Di
Ventura, Bartolomeo Della
Uccio, Umberto Scotti di
Mirabella, Salvatore
Nicotra, Giuseppe
Spinella, Corrado
Jespersen, Thomas S.
Granozio, Fabio Miletto
description The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, the samples are 3D objects with thickness in the mm range. This prevented researchers so far from adopting strategies that are only viable for fully 2D materials, or from effectively exploiting degrees of freedom related to strain, strain gradient and curvature. Here a method based on pure strain engineering for obtaining freestanding LaAlO3/SrTiO3 membranes with micrometer lateral dimensions is demonstrated. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each layer showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes transferred on silicon chips. The samples exhibit metallic conductivity and electrostatic field effect like 2D‐electron systems in bulk heterostructures. The results open a new path for adding oxide functionalities into semiconductor electronics, potentially allowing for ultra‐low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on‐chip straintronics. The realization of freestanding, curved, metallic LaAlO3/SrTiO3 heterostructures is reported. An unprecedented fabrication concept based on pure strain engineering is demonstrated. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes after transfer on silicon chips. The results open a new path for adding oxide functionality into semiconductor electronics, including superconducting transistors arrays and on‐chip straintronics.
doi_str_mv 10.1002/adfm.201909964
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2457212350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457212350</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1484-9e1060ee9eed70ba1aa0a325b757238fc063b1af196de0a642ee6353538b33e93</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFavngNeTTuzk2yyx1CNCi09tIK3ZdNMJCUfddMivfUn-Bv9JaZUyhxmXnh4Bx4h7hFGCCDHNi_qkQTUoLUKLsQAFSqfQMaX5xs_rsVN160BMIooGAi94Kr4Pfykras5f_QmbZPvVtuy-fSmNqnmNF64ZTknb1auXNuDM64zZxvubsVVYauO7_73ULynz8vJqz-dv7xNkqm_wSAOfM0ICpg1cx5BZtFasCTDLAojSXGxAkUZ2gK1yhmsCiSzorCfOCNiTUPxcOrduPZrx93WrNuda_qXRgZ9B0oKoaf0ifouK96bjStr6_YGwRzdmKMbc3Zjkqd0dk70B3LkWhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457212350</pqid></control><display><type>article</type><title>Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sambri, Alessia ; Scuderi, Mario ; Guarino, Anita ; Gennaro, Emiliano Di ; Erlandsen, Ricci ; Dahm, Rasmus T. ; Bjørlig, Anders V. ; Christensen, Dennis V. ; Capua, Roberto Di ; Ventura, Bartolomeo Della ; Uccio, Umberto Scotti di ; Mirabella, Salvatore ; Nicotra, Giuseppe ; Spinella, Corrado ; Jespersen, Thomas S. ; Granozio, Fabio Miletto</creator><creatorcontrib>Sambri, Alessia ; Scuderi, Mario ; Guarino, Anita ; Gennaro, Emiliano Di ; Erlandsen, Ricci ; Dahm, Rasmus T. ; Bjørlig, Anders V. ; Christensen, Dennis V. ; Capua, Roberto Di ; Ventura, Bartolomeo Della ; Uccio, Umberto Scotti di ; Mirabella, Salvatore ; Nicotra, Giuseppe ; Spinella, Corrado ; Jespersen, Thomas S. ; Granozio, Fabio Miletto</creatorcontrib><description>The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, the samples are 3D objects with thickness in the mm range. This prevented researchers so far from adopting strategies that are only viable for fully 2D materials, or from effectively exploiting degrees of freedom related to strain, strain gradient and curvature. Here a method based on pure strain engineering for obtaining freestanding LaAlO3/SrTiO3 membranes with micrometer lateral dimensions is demonstrated. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each layer showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes transferred on silicon chips. The samples exhibit metallic conductivity and electrostatic field effect like 2D‐electron systems in bulk heterostructures. The results open a new path for adding oxide functionalities into semiconductor electronics, potentially allowing for ultra‐low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on‐chip straintronics. The realization of freestanding, curved, metallic LaAlO3/SrTiO3 heterostructures is reported. An unprecedented fabrication concept based on pure strain engineering is demonstrated. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes after transfer on silicon chips. The results open a new path for adding oxide functionality into semiconductor electronics, including superconducting transistors arrays and on‐chip straintronics.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201909964</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Compressive properties ; Curvature ; Electric fields ; Electron gas ; Electronic devices ; Ferroelectricity ; freestanding membranes ; Heterostructures ; LaAlO 3/SrTiO 3 ; Low voltage ; Materials science ; Membranes ; oxide heterostructures ; oxides on silicon ; strain engineering ; strain gradient ; Strontium titanates ; Tensile strain ; Transistors ; Two dimensional materials</subject><ispartof>Advanced functional materials, 2020-11, Vol.30 (45), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9417-7848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sambri, Alessia</creatorcontrib><creatorcontrib>Scuderi, Mario</creatorcontrib><creatorcontrib>Guarino, Anita</creatorcontrib><creatorcontrib>Gennaro, Emiliano Di</creatorcontrib><creatorcontrib>Erlandsen, Ricci</creatorcontrib><creatorcontrib>Dahm, Rasmus T.</creatorcontrib><creatorcontrib>Bjørlig, Anders V.</creatorcontrib><creatorcontrib>Christensen, Dennis V.</creatorcontrib><creatorcontrib>Capua, Roberto Di</creatorcontrib><creatorcontrib>Ventura, Bartolomeo Della</creatorcontrib><creatorcontrib>Uccio, Umberto Scotti di</creatorcontrib><creatorcontrib>Mirabella, Salvatore</creatorcontrib><creatorcontrib>Nicotra, Giuseppe</creatorcontrib><creatorcontrib>Spinella, Corrado</creatorcontrib><creatorcontrib>Jespersen, Thomas S.</creatorcontrib><creatorcontrib>Granozio, Fabio Miletto</creatorcontrib><title>Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes</title><title>Advanced functional materials</title><description>The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, the samples are 3D objects with thickness in the mm range. This prevented researchers so far from adopting strategies that are only viable for fully 2D materials, or from effectively exploiting degrees of freedom related to strain, strain gradient and curvature. Here a method based on pure strain engineering for obtaining freestanding LaAlO3/SrTiO3 membranes with micrometer lateral dimensions is demonstrated. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each layer showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes transferred on silicon chips. The samples exhibit metallic conductivity and electrostatic field effect like 2D‐electron systems in bulk heterostructures. The results open a new path for adding oxide functionalities into semiconductor electronics, potentially allowing for ultra‐low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on‐chip straintronics. The realization of freestanding, curved, metallic LaAlO3/SrTiO3 heterostructures is reported. An unprecedented fabrication concept based on pure strain engineering is demonstrated. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes after transfer on silicon chips. The results open a new path for adding oxide functionality into semiconductor electronics, including superconducting transistors arrays and on‐chip straintronics.</description><subject>Compressive properties</subject><subject>Curvature</subject><subject>Electric fields</subject><subject>Electron gas</subject><subject>Electronic devices</subject><subject>Ferroelectricity</subject><subject>freestanding membranes</subject><subject>Heterostructures</subject><subject>LaAlO 3/SrTiO 3</subject><subject>Low voltage</subject><subject>Materials science</subject><subject>Membranes</subject><subject>oxide heterostructures</subject><subject>oxides on silicon</subject><subject>strain engineering</subject><subject>strain gradient</subject><subject>Strontium titanates</subject><subject>Tensile strain</subject><subject>Transistors</subject><subject>Two dimensional materials</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFavngNeTTuzk2yyx1CNCi09tIK3ZdNMJCUfddMivfUn-Bv9JaZUyhxmXnh4Bx4h7hFGCCDHNi_qkQTUoLUKLsQAFSqfQMaX5xs_rsVN160BMIooGAi94Kr4Pfykras5f_QmbZPvVtuy-fSmNqnmNF64ZTknb1auXNuDM64zZxvubsVVYauO7_73ULynz8vJqz-dv7xNkqm_wSAOfM0ICpg1cx5BZtFasCTDLAojSXGxAkUZ2gK1yhmsCiSzorCfOCNiTUPxcOrduPZrx93WrNuda_qXRgZ9B0oKoaf0ifouK96bjStr6_YGwRzdmKMbc3Zjkqd0dk70B3LkWhs</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Sambri, Alessia</creator><creator>Scuderi, Mario</creator><creator>Guarino, Anita</creator><creator>Gennaro, Emiliano Di</creator><creator>Erlandsen, Ricci</creator><creator>Dahm, Rasmus T.</creator><creator>Bjørlig, Anders V.</creator><creator>Christensen, Dennis V.</creator><creator>Capua, Roberto Di</creator><creator>Ventura, Bartolomeo Della</creator><creator>Uccio, Umberto Scotti di</creator><creator>Mirabella, Salvatore</creator><creator>Nicotra, Giuseppe</creator><creator>Spinella, Corrado</creator><creator>Jespersen, Thomas S.</creator><creator>Granozio, Fabio Miletto</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9417-7848</orcidid></search><sort><creationdate>20201101</creationdate><title>Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes</title><author>Sambri, Alessia ; Scuderi, Mario ; Guarino, Anita ; Gennaro, Emiliano Di ; Erlandsen, Ricci ; Dahm, Rasmus T. ; Bjørlig, Anders V. ; Christensen, Dennis V. ; Capua, Roberto Di ; Ventura, Bartolomeo Della ; Uccio, Umberto Scotti di ; Mirabella, Salvatore ; Nicotra, Giuseppe ; Spinella, Corrado ; Jespersen, Thomas S. ; Granozio, Fabio Miletto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1484-9e1060ee9eed70ba1aa0a325b757238fc063b1af196de0a642ee6353538b33e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressive properties</topic><topic>Curvature</topic><topic>Electric fields</topic><topic>Electron gas</topic><topic>Electronic devices</topic><topic>Ferroelectricity</topic><topic>freestanding membranes</topic><topic>Heterostructures</topic><topic>LaAlO 3/SrTiO 3</topic><topic>Low voltage</topic><topic>Materials science</topic><topic>Membranes</topic><topic>oxide heterostructures</topic><topic>oxides on silicon</topic><topic>strain engineering</topic><topic>strain gradient</topic><topic>Strontium titanates</topic><topic>Tensile strain</topic><topic>Transistors</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sambri, Alessia</creatorcontrib><creatorcontrib>Scuderi, Mario</creatorcontrib><creatorcontrib>Guarino, Anita</creatorcontrib><creatorcontrib>Gennaro, Emiliano Di</creatorcontrib><creatorcontrib>Erlandsen, Ricci</creatorcontrib><creatorcontrib>Dahm, Rasmus T.</creatorcontrib><creatorcontrib>Bjørlig, Anders V.</creatorcontrib><creatorcontrib>Christensen, Dennis V.</creatorcontrib><creatorcontrib>Capua, Roberto Di</creatorcontrib><creatorcontrib>Ventura, Bartolomeo Della</creatorcontrib><creatorcontrib>Uccio, Umberto Scotti di</creatorcontrib><creatorcontrib>Mirabella, Salvatore</creatorcontrib><creatorcontrib>Nicotra, Giuseppe</creatorcontrib><creatorcontrib>Spinella, Corrado</creatorcontrib><creatorcontrib>Jespersen, Thomas S.</creatorcontrib><creatorcontrib>Granozio, Fabio Miletto</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sambri, Alessia</au><au>Scuderi, Mario</au><au>Guarino, Anita</au><au>Gennaro, Emiliano Di</au><au>Erlandsen, Ricci</au><au>Dahm, Rasmus T.</au><au>Bjørlig, Anders V.</au><au>Christensen, Dennis V.</au><au>Capua, Roberto Di</au><au>Ventura, Bartolomeo Della</au><au>Uccio, Umberto Scotti di</au><au>Mirabella, Salvatore</au><au>Nicotra, Giuseppe</au><au>Spinella, Corrado</au><au>Jespersen, Thomas S.</au><au>Granozio, Fabio Miletto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes</atitle><jtitle>Advanced functional materials</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>30</volume><issue>45</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, the samples are 3D objects with thickness in the mm range. This prevented researchers so far from adopting strategies that are only viable for fully 2D materials, or from effectively exploiting degrees of freedom related to strain, strain gradient and curvature. Here a method based on pure strain engineering for obtaining freestanding LaAlO3/SrTiO3 membranes with micrometer lateral dimensions is demonstrated. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each layer showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes transferred on silicon chips. The samples exhibit metallic conductivity and electrostatic field effect like 2D‐electron systems in bulk heterostructures. The results open a new path for adding oxide functionalities into semiconductor electronics, potentially allowing for ultra‐low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on‐chip straintronics. The realization of freestanding, curved, metallic LaAlO3/SrTiO3 heterostructures is reported. An unprecedented fabrication concept based on pure strain engineering is demonstrated. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes after transfer on silicon chips. The results open a new path for adding oxide functionality into semiconductor electronics, including superconducting transistors arrays and on‐chip straintronics.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201909964</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9417-7848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-11, Vol.30 (45), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2457212350
source Wiley-Blackwell Read & Publish Collection
subjects Compressive properties
Curvature
Electric fields
Electron gas
Electronic devices
Ferroelectricity
freestanding membranes
Heterostructures
LaAlO 3/SrTiO 3
Low voltage
Materials science
Membranes
oxide heterostructures
oxides on silicon
strain engineering
strain gradient
Strontium titanates
Tensile strain
Transistors
Two dimensional materials
title Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Formed,%20Conducting%20LaAlO3/SrTiO3%20Micro%E2%80%90Membranes&rft.jtitle=Advanced%20functional%20materials&rft.au=Sambri,%20Alessia&rft.date=2020-11-01&rft.volume=30&rft.issue=45&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201909964&rft_dat=%3Cproquest_wiley%3E2457212350%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1484-9e1060ee9eed70ba1aa0a325b757238fc063b1af196de0a642ee6353538b33e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457212350&rft_id=info:pmid/&rfr_iscdi=true