Loading…

Mesoscale simulations of melt production in porous metals under shock compression

Mesoscale simulations of a LiF impactor colliding with a PMMA capsule containing aluminum powder (ρ00 = 1.5 g/cc) have been performed to investigate shock-induced melting in porous metals. Impact velocities of 1-2.5 km/s are chosen to coincide with in situ X-ray diffraction experiments, which provid...

Full description

Saved in:
Bibliographic Details
Main Authors: Demaske, B., Hudspeth, M., Mandal, A., Jensen, B., Crum, R., Vogler, T.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c332t-6e31c44ed3010e58a959c5965bf374a4441cacfaf6ec5c777a84a68089545cf73
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2272
creator Demaske, B.
Hudspeth, M.
Mandal, A.
Jensen, B.
Crum, R.
Vogler, T.
description Mesoscale simulations of a LiF impactor colliding with a PMMA capsule containing aluminum powder (ρ00 = 1.5 g/cc) have been performed to investigate shock-induced melting in porous metals. Impact velocities of 1-2.5 km/s are chosen to coincide with in situ X-ray diffraction experiments, which provide direct evidence of shock-induced melting in aluminum powders. Mesoscale simulations show shock heating within the powder is highly nonuniform and melting remains incomplete over hundreds of nanoseconds behind the shock front despite equilibrium pressure-temperature states from continuum simulations lying above the experimental melt line. Such incomplete melting behavior is consistent with X-ray diffraction data obtained in experiment. For an impact velocity of ∼1 km/s, mesoscale simulations predict re- solidification behind the shock front as high-temperature regions are cooled below the melt line. Reducing the grain size of the powder by a factor of two leads to a reduction in the time required to reach complete melt such that total melting of the powder may be observed experimentally for an impact velocity of 2.42 km/s.
doi_str_mv 10.1063/12.0001033
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2457401459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457401459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-6e31c44ed3010e58a959c5965bf374a4441cacfaf6ec5c777a84a68089545cf73</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5e_AQBj9I1af41R1l0FVZEUPAW4jTBrm1Tk1bw25t19-DJ08C8HzPvPYTOKVlQItkVLReEEEoYO0AzKgQtlKTyEM0I0bwoOXs9RicpbQgptVLVDD09uBQS2Nbh1HRTa8cm9AkHjzvXjniIoZ5gu8NNj4cQw5SyMto24amvXcTpPcAHhtAN0aWUwVN05LPszvZzjl5ub56Xd8X6cXW_vF4XwFg5FtIxCpy7mmW7TlRWCw1CS_HmmeKWc07BgrdeOhCglLIVt7IilRZcgFdsji52d7PHz8ml0WzCFPv80pRcKE4oFzpTlzsqQTP-hjNDbDobvw0lZtuZoaXZd_Yf_RXiH9IMtWc_ej5tmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2457401459</pqid></control><display><type>conference_proceeding</type><title>Mesoscale simulations of melt production in porous metals under shock compression</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Demaske, B. ; Hudspeth, M. ; Mandal, A. ; Jensen, B. ; Crum, R. ; Vogler, T.</creator><contributor>Zaug, Joseph ; Germann, Timothy C. ; Armstrong, Michael R. ; Wixom, Ryan ; Damm, David ; Lane, J. Matthew D.</contributor><creatorcontrib>Demaske, B. ; Hudspeth, M. ; Mandal, A. ; Jensen, B. ; Crum, R. ; Vogler, T. ; Zaug, Joseph ; Germann, Timothy C. ; Armstrong, Michael R. ; Wixom, Ryan ; Damm, David ; Lane, J. Matthew D.</creatorcontrib><description>Mesoscale simulations of a LiF impactor colliding with a PMMA capsule containing aluminum powder (ρ00 = 1.5 g/cc) have been performed to investigate shock-induced melting in porous metals. Impact velocities of 1-2.5 km/s are chosen to coincide with in situ X-ray diffraction experiments, which provide direct evidence of shock-induced melting in aluminum powders. Mesoscale simulations show shock heating within the powder is highly nonuniform and melting remains incomplete over hundreds of nanoseconds behind the shock front despite equilibrium pressure-temperature states from continuum simulations lying above the experimental melt line. Such incomplete melting behavior is consistent with X-ray diffraction data obtained in experiment. For an impact velocity of ∼1 km/s, mesoscale simulations predict re- solidification behind the shock front as high-temperature regions are cooled below the melt line. Reducing the grain size of the powder by a factor of two leads to a reduction in the time required to reach complete melt such that total melting of the powder may be observed experimentally for an impact velocity of 2.42 km/s.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/12.0001033</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; Grain size ; High temperature ; Impact velocity ; Lithium fluoride ; Melting ; Mesoscale phenomena ; Porous metals ; Shock heating ; Simulation ; Solidification ; X-ray diffraction</subject><ispartof>AIP Conference Proceedings, 2020, Vol.2272 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-6e31c44ed3010e58a959c5965bf374a4441cacfaf6ec5c777a84a68089545cf73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Zaug, Joseph</contributor><contributor>Germann, Timothy C.</contributor><contributor>Armstrong, Michael R.</contributor><contributor>Wixom, Ryan</contributor><contributor>Damm, David</contributor><contributor>Lane, J. Matthew D.</contributor><creatorcontrib>Demaske, B.</creatorcontrib><creatorcontrib>Hudspeth, M.</creatorcontrib><creatorcontrib>Mandal, A.</creatorcontrib><creatorcontrib>Jensen, B.</creatorcontrib><creatorcontrib>Crum, R.</creatorcontrib><creatorcontrib>Vogler, T.</creatorcontrib><title>Mesoscale simulations of melt production in porous metals under shock compression</title><title>AIP Conference Proceedings</title><description>Mesoscale simulations of a LiF impactor colliding with a PMMA capsule containing aluminum powder (ρ00 = 1.5 g/cc) have been performed to investigate shock-induced melting in porous metals. Impact velocities of 1-2.5 km/s are chosen to coincide with in situ X-ray diffraction experiments, which provide direct evidence of shock-induced melting in aluminum powders. Mesoscale simulations show shock heating within the powder is highly nonuniform and melting remains incomplete over hundreds of nanoseconds behind the shock front despite equilibrium pressure-temperature states from continuum simulations lying above the experimental melt line. Such incomplete melting behavior is consistent with X-ray diffraction data obtained in experiment. For an impact velocity of ∼1 km/s, mesoscale simulations predict re- solidification behind the shock front as high-temperature regions are cooled below the melt line. Reducing the grain size of the powder by a factor of two leads to a reduction in the time required to reach complete melt such that total melting of the powder may be observed experimentally for an impact velocity of 2.42 km/s.</description><subject>Aluminum</subject><subject>Grain size</subject><subject>High temperature</subject><subject>Impact velocity</subject><subject>Lithium fluoride</subject><subject>Melting</subject><subject>Mesoscale phenomena</subject><subject>Porous metals</subject><subject>Shock heating</subject><subject>Simulation</subject><subject>Solidification</subject><subject>X-ray diffraction</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LxDAQxYMouK5e_AQBj9I1af41R1l0FVZEUPAW4jTBrm1Tk1bw25t19-DJ08C8HzPvPYTOKVlQItkVLReEEEoYO0AzKgQtlKTyEM0I0bwoOXs9RicpbQgptVLVDD09uBQS2Nbh1HRTa8cm9AkHjzvXjniIoZ5gu8NNj4cQw5SyMto24amvXcTpPcAHhtAN0aWUwVN05LPszvZzjl5ub56Xd8X6cXW_vF4XwFg5FtIxCpy7mmW7TlRWCw1CS_HmmeKWc07BgrdeOhCglLIVt7IilRZcgFdsji52d7PHz8ml0WzCFPv80pRcKE4oFzpTlzsqQTP-hjNDbDobvw0lZtuZoaXZd_Yf_RXiH9IMtWc_ej5tmw</recordid><startdate>20201102</startdate><enddate>20201102</enddate><creator>Demaske, B.</creator><creator>Hudspeth, M.</creator><creator>Mandal, A.</creator><creator>Jensen, B.</creator><creator>Crum, R.</creator><creator>Vogler, T.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201102</creationdate><title>Mesoscale simulations of melt production in porous metals under shock compression</title><author>Demaske, B. ; Hudspeth, M. ; Mandal, A. ; Jensen, B. ; Crum, R. ; Vogler, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-6e31c44ed3010e58a959c5965bf374a4441cacfaf6ec5c777a84a68089545cf73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Grain size</topic><topic>High temperature</topic><topic>Impact velocity</topic><topic>Lithium fluoride</topic><topic>Melting</topic><topic>Mesoscale phenomena</topic><topic>Porous metals</topic><topic>Shock heating</topic><topic>Simulation</topic><topic>Solidification</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demaske, B.</creatorcontrib><creatorcontrib>Hudspeth, M.</creatorcontrib><creatorcontrib>Mandal, A.</creatorcontrib><creatorcontrib>Jensen, B.</creatorcontrib><creatorcontrib>Crum, R.</creatorcontrib><creatorcontrib>Vogler, T.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demaske, B.</au><au>Hudspeth, M.</au><au>Mandal, A.</au><au>Jensen, B.</au><au>Crum, R.</au><au>Vogler, T.</au><au>Zaug, Joseph</au><au>Germann, Timothy C.</au><au>Armstrong, Michael R.</au><au>Wixom, Ryan</au><au>Damm, David</au><au>Lane, J. Matthew D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mesoscale simulations of melt production in porous metals under shock compression</atitle><btitle>AIP Conference Proceedings</btitle><date>2020-11-02</date><risdate>2020</risdate><volume>2272</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Mesoscale simulations of a LiF impactor colliding with a PMMA capsule containing aluminum powder (ρ00 = 1.5 g/cc) have been performed to investigate shock-induced melting in porous metals. Impact velocities of 1-2.5 km/s are chosen to coincide with in situ X-ray diffraction experiments, which provide direct evidence of shock-induced melting in aluminum powders. Mesoscale simulations show shock heating within the powder is highly nonuniform and melting remains incomplete over hundreds of nanoseconds behind the shock front despite equilibrium pressure-temperature states from continuum simulations lying above the experimental melt line. Such incomplete melting behavior is consistent with X-ray diffraction data obtained in experiment. For an impact velocity of ∼1 km/s, mesoscale simulations predict re- solidification behind the shock front as high-temperature regions are cooled below the melt line. Reducing the grain size of the powder by a factor of two leads to a reduction in the time required to reach complete melt such that total melting of the powder may be observed experimentally for an impact velocity of 2.42 km/s.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/12.0001033</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2020, Vol.2272 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2457401459
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Aluminum
Grain size
High temperature
Impact velocity
Lithium fluoride
Melting
Mesoscale phenomena
Porous metals
Shock heating
Simulation
Solidification
X-ray diffraction
title Mesoscale simulations of melt production in porous metals under shock compression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mesoscale%20simulations%20of%20melt%20production%20in%20porous%20metals%20under%20shock%20compression&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Demaske,%20B.&rft.date=2020-11-02&rft.volume=2272&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/12.0001033&rft_dat=%3Cproquest_scita%3E2457401459%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-6e31c44ed3010e58a959c5965bf374a4441cacfaf6ec5c777a84a68089545cf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457401459&rft_id=info:pmid/&rfr_iscdi=true