Loading…
Mesoscale simulations of melt production in porous metals under shock compression
Mesoscale simulations of a LiF impactor colliding with a PMMA capsule containing aluminum powder (ρ00 = 1.5 g/cc) have been performed to investigate shock-induced melting in porous metals. Impact velocities of 1-2.5 km/s are chosen to coincide with in situ X-ray diffraction experiments, which provid...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c332t-6e31c44ed3010e58a959c5965bf374a4441cacfaf6ec5c777a84a68089545cf73 |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2272 |
creator | Demaske, B. Hudspeth, M. Mandal, A. Jensen, B. Crum, R. Vogler, T. |
description | Mesoscale simulations of a LiF impactor colliding with a PMMA capsule containing aluminum powder (ρ00 = 1.5 g/cc) have been performed to investigate shock-induced melting in porous metals. Impact velocities of 1-2.5 km/s are chosen to coincide with in situ X-ray diffraction experiments, which provide direct evidence of shock-induced melting in aluminum powders. Mesoscale simulations show shock heating within the powder is highly nonuniform and melting remains incomplete over hundreds of nanoseconds behind the shock front despite equilibrium pressure-temperature states from continuum simulations lying above the experimental melt line. Such incomplete melting behavior is consistent with X-ray diffraction data obtained in experiment. For an impact velocity of ∼1 km/s, mesoscale simulations predict re- solidification behind the shock front as high-temperature regions are cooled below the melt line. Reducing the grain size of the powder by a factor of two leads to a reduction in the time required to reach complete melt such that total melting of the powder may be observed experimentally for an impact velocity of 2.42 km/s. |
doi_str_mv | 10.1063/12.0001033 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2457401459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457401459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-6e31c44ed3010e58a959c5965bf374a4441cacfaf6ec5c777a84a68089545cf73</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5e_AQBj9I1af41R1l0FVZEUPAW4jTBrm1Tk1bw25t19-DJ08C8HzPvPYTOKVlQItkVLReEEEoYO0AzKgQtlKTyEM0I0bwoOXs9RicpbQgptVLVDD09uBQS2Nbh1HRTa8cm9AkHjzvXjniIoZ5gu8NNj4cQw5SyMto24amvXcTpPcAHhtAN0aWUwVN05LPszvZzjl5ub56Xd8X6cXW_vF4XwFg5FtIxCpy7mmW7TlRWCw1CS_HmmeKWc07BgrdeOhCglLIVt7IilRZcgFdsji52d7PHz8ml0WzCFPv80pRcKE4oFzpTlzsqQTP-hjNDbDobvw0lZtuZoaXZd_Yf_RXiH9IMtWc_ej5tmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2457401459</pqid></control><display><type>conference_proceeding</type><title>Mesoscale simulations of melt production in porous metals under shock compression</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Demaske, B. ; Hudspeth, M. ; Mandal, A. ; Jensen, B. ; Crum, R. ; Vogler, T.</creator><contributor>Zaug, Joseph ; Germann, Timothy C. ; Armstrong, Michael R. ; Wixom, Ryan ; Damm, David ; Lane, J. Matthew D.</contributor><creatorcontrib>Demaske, B. ; Hudspeth, M. ; Mandal, A. ; Jensen, B. ; Crum, R. ; Vogler, T. ; Zaug, Joseph ; Germann, Timothy C. ; Armstrong, Michael R. ; Wixom, Ryan ; Damm, David ; Lane, J. Matthew D.</creatorcontrib><description>Mesoscale simulations of a LiF impactor colliding with a PMMA capsule containing aluminum powder (ρ00 = 1.5 g/cc) have been performed to investigate shock-induced melting in porous metals. Impact velocities of 1-2.5 km/s are chosen to coincide with in situ X-ray diffraction experiments, which provide direct evidence of shock-induced melting in aluminum powders. Mesoscale simulations show shock heating within the powder is highly nonuniform and melting remains incomplete over hundreds of nanoseconds behind the shock front despite equilibrium pressure-temperature states from continuum simulations lying above the experimental melt line. Such incomplete melting behavior is consistent with X-ray diffraction data obtained in experiment. For an impact velocity of ∼1 km/s, mesoscale simulations predict re- solidification behind the shock front as high-temperature regions are cooled below the melt line. Reducing the grain size of the powder by a factor of two leads to a reduction in the time required to reach complete melt such that total melting of the powder may be observed experimentally for an impact velocity of 2.42 km/s.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/12.0001033</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; Grain size ; High temperature ; Impact velocity ; Lithium fluoride ; Melting ; Mesoscale phenomena ; Porous metals ; Shock heating ; Simulation ; Solidification ; X-ray diffraction</subject><ispartof>AIP Conference Proceedings, 2020, Vol.2272 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-6e31c44ed3010e58a959c5965bf374a4441cacfaf6ec5c777a84a68089545cf73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Zaug, Joseph</contributor><contributor>Germann, Timothy C.</contributor><contributor>Armstrong, Michael R.</contributor><contributor>Wixom, Ryan</contributor><contributor>Damm, David</contributor><contributor>Lane, J. Matthew D.</contributor><creatorcontrib>Demaske, B.</creatorcontrib><creatorcontrib>Hudspeth, M.</creatorcontrib><creatorcontrib>Mandal, A.</creatorcontrib><creatorcontrib>Jensen, B.</creatorcontrib><creatorcontrib>Crum, R.</creatorcontrib><creatorcontrib>Vogler, T.</creatorcontrib><title>Mesoscale simulations of melt production in porous metals under shock compression</title><title>AIP Conference Proceedings</title><description>Mesoscale simulations of a LiF impactor colliding with a PMMA capsule containing aluminum powder (ρ00 = 1.5 g/cc) have been performed to investigate shock-induced melting in porous metals. Impact velocities of 1-2.5 km/s are chosen to coincide with in situ X-ray diffraction experiments, which provide direct evidence of shock-induced melting in aluminum powders. Mesoscale simulations show shock heating within the powder is highly nonuniform and melting remains incomplete over hundreds of nanoseconds behind the shock front despite equilibrium pressure-temperature states from continuum simulations lying above the experimental melt line. Such incomplete melting behavior is consistent with X-ray diffraction data obtained in experiment. For an impact velocity of ∼1 km/s, mesoscale simulations predict re- solidification behind the shock front as high-temperature regions are cooled below the melt line. Reducing the grain size of the powder by a factor of two leads to a reduction in the time required to reach complete melt such that total melting of the powder may be observed experimentally for an impact velocity of 2.42 km/s.</description><subject>Aluminum</subject><subject>Grain size</subject><subject>High temperature</subject><subject>Impact velocity</subject><subject>Lithium fluoride</subject><subject>Melting</subject><subject>Mesoscale phenomena</subject><subject>Porous metals</subject><subject>Shock heating</subject><subject>Simulation</subject><subject>Solidification</subject><subject>X-ray diffraction</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LxDAQxYMouK5e_AQBj9I1af41R1l0FVZEUPAW4jTBrm1Tk1bw25t19-DJ08C8HzPvPYTOKVlQItkVLReEEEoYO0AzKgQtlKTyEM0I0bwoOXs9RicpbQgptVLVDD09uBQS2Nbh1HRTa8cm9AkHjzvXjniIoZ5gu8NNj4cQw5SyMto24amvXcTpPcAHhtAN0aWUwVN05LPszvZzjl5ub56Xd8X6cXW_vF4XwFg5FtIxCpy7mmW7TlRWCw1CS_HmmeKWc07BgrdeOhCglLIVt7IilRZcgFdsji52d7PHz8ml0WzCFPv80pRcKE4oFzpTlzsqQTP-hjNDbDobvw0lZtuZoaXZd_Yf_RXiH9IMtWc_ej5tmw</recordid><startdate>20201102</startdate><enddate>20201102</enddate><creator>Demaske, B.</creator><creator>Hudspeth, M.</creator><creator>Mandal, A.</creator><creator>Jensen, B.</creator><creator>Crum, R.</creator><creator>Vogler, T.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201102</creationdate><title>Mesoscale simulations of melt production in porous metals under shock compression</title><author>Demaske, B. ; Hudspeth, M. ; Mandal, A. ; Jensen, B. ; Crum, R. ; Vogler, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-6e31c44ed3010e58a959c5965bf374a4441cacfaf6ec5c777a84a68089545cf73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Grain size</topic><topic>High temperature</topic><topic>Impact velocity</topic><topic>Lithium fluoride</topic><topic>Melting</topic><topic>Mesoscale phenomena</topic><topic>Porous metals</topic><topic>Shock heating</topic><topic>Simulation</topic><topic>Solidification</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demaske, B.</creatorcontrib><creatorcontrib>Hudspeth, M.</creatorcontrib><creatorcontrib>Mandal, A.</creatorcontrib><creatorcontrib>Jensen, B.</creatorcontrib><creatorcontrib>Crum, R.</creatorcontrib><creatorcontrib>Vogler, T.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demaske, B.</au><au>Hudspeth, M.</au><au>Mandal, A.</au><au>Jensen, B.</au><au>Crum, R.</au><au>Vogler, T.</au><au>Zaug, Joseph</au><au>Germann, Timothy C.</au><au>Armstrong, Michael R.</au><au>Wixom, Ryan</au><au>Damm, David</au><au>Lane, J. Matthew D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mesoscale simulations of melt production in porous metals under shock compression</atitle><btitle>AIP Conference Proceedings</btitle><date>2020-11-02</date><risdate>2020</risdate><volume>2272</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Mesoscale simulations of a LiF impactor colliding with a PMMA capsule containing aluminum powder (ρ00 = 1.5 g/cc) have been performed to investigate shock-induced melting in porous metals. Impact velocities of 1-2.5 km/s are chosen to coincide with in situ X-ray diffraction experiments, which provide direct evidence of shock-induced melting in aluminum powders. Mesoscale simulations show shock heating within the powder is highly nonuniform and melting remains incomplete over hundreds of nanoseconds behind the shock front despite equilibrium pressure-temperature states from continuum simulations lying above the experimental melt line. Such incomplete melting behavior is consistent with X-ray diffraction data obtained in experiment. For an impact velocity of ∼1 km/s, mesoscale simulations predict re- solidification behind the shock front as high-temperature regions are cooled below the melt line. Reducing the grain size of the powder by a factor of two leads to a reduction in the time required to reach complete melt such that total melting of the powder may be observed experimentally for an impact velocity of 2.42 km/s.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/12.0001033</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2020, Vol.2272 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2457401459 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Aluminum Grain size High temperature Impact velocity Lithium fluoride Melting Mesoscale phenomena Porous metals Shock heating Simulation Solidification X-ray diffraction |
title | Mesoscale simulations of melt production in porous metals under shock compression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mesoscale%20simulations%20of%20melt%20production%20in%20porous%20metals%20under%20shock%20compression&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Demaske,%20B.&rft.date=2020-11-02&rft.volume=2272&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/12.0001033&rft_dat=%3Cproquest_scita%3E2457401459%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-6e31c44ed3010e58a959c5965bf374a4441cacfaf6ec5c777a84a68089545cf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457401459&rft_id=info:pmid/&rfr_iscdi=true |