Loading…

Continuous measurements for control of superconducting quantum circuits

Developments over the last two decades have opened the path towards quantum technologies in many quantum systems, such as cold atoms, trapped ions, cavity-quantum electrodynamics (QED), and circuit-QED. However, the fragility of quantum states to the effects of measurement and decoherence still pose...

Full description

Saved in:
Bibliographic Details
Published in:Advances in physics: X 2020-01, Vol.5 (1), p.1813626
Main Authors: Hacohen-Gourgy, S., Martin, L. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-fd094151cc8419c46e6596f2be7770aea62ed0d53ed51e59b63f29b2fb30dbba3
cites cdi_FETCH-LOGICAL-c451t-fd094151cc8419c46e6596f2be7770aea62ed0d53ed51e59b63f29b2fb30dbba3
container_end_page
container_issue 1
container_start_page 1813626
container_title Advances in physics: X
container_volume 5
creator Hacohen-Gourgy, S.
Martin, L. S.
description Developments over the last two decades have opened the path towards quantum technologies in many quantum systems, such as cold atoms, trapped ions, cavity-quantum electrodynamics (QED), and circuit-QED. However, the fragility of quantum states to the effects of measurement and decoherence still poses one of the greatest challenges in quantum technology. An imperative capability in this path is quantum feedback, as it enhances the control possibilities and allows for prolonging coherence times through quantum error correction. While changing parameters from shot to shot of an experiment or procedure can be considered feedback, quantum mechanics also allows for the intriguing possibility of performing feedback operations during the measurement process itself. This broader approach to measurements leads to the concepts of weak measurement, quantum trajectories, and numerous types of feedback with no classical analogs. These types of processes are the primary focus of this review. We introduce the concept of quantum feedback in the context of circuit-QED, an experimental platform with significant potential in quantum feedback and technology. We then discuss several experiments and see how they elucidate the concepts of continuous measurements and feedback. We conclude with an overview of coherent feedback, with application to fault-tolerant error correction.
doi_str_mv 10.1080/23746149.2020.1813626
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2458509884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6392f44bf841484daba1cd387789a857</doaj_id><sourcerecordid>2458509884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-fd094151cc8419c46e6596f2be7770aea62ed0d53ed51e59b63f29b2fb30dbba3</originalsourceid><addsrcrecordid>eNp9UU1LAzEUXETBUvsThAXP1XxvclOK1kLBi55DNh9ly-6mTTZI_71Zt4onTy9v3sy8R6YobiG4h4CDB4QrwiAR9wigDHGIGWIXxWzEl-Pg8s_7uljEuAcAQFZlMZ4V65Xvh6ZPPsWysyqmYDvbD7F0PpQ6z4JvS-_KmA425N4knem78phUP6Su1E3QqRniTXHlVBvt4lznxcfL8_vqdbl9W29WT9ulJhQOS2eAIJBCrTmBQhNmGRXModpWVQWUVQxZAwzF1lBoqagZdkjUyNUYmLpWeF5sJl_j1V4eQtOpcJJeNfIb8GEnVRga3VrJsECOkNrlVYQTo2oFtcG8qrhQnFbZ627yOgR_TDYOcu9T6PP5EhHKKRCck8yiE0sHH2Ow7ncrBHKMQP5EIMcI5DmCrHucdE2f_7JTnz60Rg7q1Prggup1EyX-3-IL9XiNgw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458509884</pqid></control><display><type>article</type><title>Continuous measurements for control of superconducting quantum circuits</title><source>Taylor &amp; Francis Open Access</source><source>Publicly Available Content Database</source><creator>Hacohen-Gourgy, S. ; Martin, L. S.</creator><creatorcontrib>Hacohen-Gourgy, S. ; Martin, L. S.</creatorcontrib><description>Developments over the last two decades have opened the path towards quantum technologies in many quantum systems, such as cold atoms, trapped ions, cavity-quantum electrodynamics (QED), and circuit-QED. However, the fragility of quantum states to the effects of measurement and decoherence still poses one of the greatest challenges in quantum technology. An imperative capability in this path is quantum feedback, as it enhances the control possibilities and allows for prolonging coherence times through quantum error correction. While changing parameters from shot to shot of an experiment or procedure can be considered feedback, quantum mechanics also allows for the intriguing possibility of performing feedback operations during the measurement process itself. This broader approach to measurements leads to the concepts of weak measurement, quantum trajectories, and numerous types of feedback with no classical analogs. These types of processes are the primary focus of this review. We introduce the concept of quantum feedback in the context of circuit-QED, an experimental platform with significant potential in quantum feedback and technology. We then discuss several experiments and see how they elucidate the concepts of continuous measurements and feedback. We conclude with an overview of coherent feedback, with application to fault-tolerant error correction.</description><identifier>ISSN: 2374-6149</identifier><identifier>EISSN: 2374-6149</identifier><identifier>DOI: 10.1080/23746149.2020.1813626</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Circuit-QED ; Circuits ; Cold atoms ; Cold traps ; continuous measurement ; Error correction ; Error correction &amp; detection ; Fault tolerance ; Feedback ; Fragility ; quantum control ; Quantum electrodynamics ; quantum feedback ; Quantum mechanics ; superconducting qubits ; Trajectory measurement</subject><ispartof>Advances in physics: X, 2020-01, Vol.5 (1), p.1813626</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-fd094151cc8419c46e6596f2be7770aea62ed0d53ed51e59b63f29b2fb30dbba3</citedby><cites>FETCH-LOGICAL-c451t-fd094151cc8419c46e6596f2be7770aea62ed0d53ed51e59b63f29b2fb30dbba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23746149.2020.1813626$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2458509884?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27479,27901,27902,36989,44566,59116,59117</link.rule.ids></links><search><creatorcontrib>Hacohen-Gourgy, S.</creatorcontrib><creatorcontrib>Martin, L. S.</creatorcontrib><title>Continuous measurements for control of superconducting quantum circuits</title><title>Advances in physics: X</title><description>Developments over the last two decades have opened the path towards quantum technologies in many quantum systems, such as cold atoms, trapped ions, cavity-quantum electrodynamics (QED), and circuit-QED. However, the fragility of quantum states to the effects of measurement and decoherence still poses one of the greatest challenges in quantum technology. An imperative capability in this path is quantum feedback, as it enhances the control possibilities and allows for prolonging coherence times through quantum error correction. While changing parameters from shot to shot of an experiment or procedure can be considered feedback, quantum mechanics also allows for the intriguing possibility of performing feedback operations during the measurement process itself. This broader approach to measurements leads to the concepts of weak measurement, quantum trajectories, and numerous types of feedback with no classical analogs. These types of processes are the primary focus of this review. We introduce the concept of quantum feedback in the context of circuit-QED, an experimental platform with significant potential in quantum feedback and technology. We then discuss several experiments and see how they elucidate the concepts of continuous measurements and feedback. We conclude with an overview of coherent feedback, with application to fault-tolerant error correction.</description><subject>Circuit-QED</subject><subject>Circuits</subject><subject>Cold atoms</subject><subject>Cold traps</subject><subject>continuous measurement</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Fault tolerance</subject><subject>Feedback</subject><subject>Fragility</subject><subject>quantum control</subject><subject>Quantum electrodynamics</subject><subject>quantum feedback</subject><subject>Quantum mechanics</subject><subject>superconducting qubits</subject><subject>Trajectory measurement</subject><issn>2374-6149</issn><issn>2374-6149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1LAzEUXETBUvsThAXP1XxvclOK1kLBi55DNh9ly-6mTTZI_71Zt4onTy9v3sy8R6YobiG4h4CDB4QrwiAR9wigDHGIGWIXxWzEl-Pg8s_7uljEuAcAQFZlMZ4V65Xvh6ZPPsWysyqmYDvbD7F0PpQ6z4JvS-_KmA425N4knem78phUP6Su1E3QqRniTXHlVBvt4lznxcfL8_vqdbl9W29WT9ulJhQOS2eAIJBCrTmBQhNmGRXModpWVQWUVQxZAwzF1lBoqagZdkjUyNUYmLpWeF5sJl_j1V4eQtOpcJJeNfIb8GEnVRga3VrJsECOkNrlVYQTo2oFtcG8qrhQnFbZ627yOgR_TDYOcu9T6PP5EhHKKRCck8yiE0sHH2Ow7ncrBHKMQP5EIMcI5DmCrHucdE2f_7JTnz60Rg7q1Prggup1EyX-3-IL9XiNgw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Hacohen-Gourgy, S.</creator><creator>Martin, L. S.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20200101</creationdate><title>Continuous measurements for control of superconducting quantum circuits</title><author>Hacohen-Gourgy, S. ; Martin, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-fd094151cc8419c46e6596f2be7770aea62ed0d53ed51e59b63f29b2fb30dbba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuit-QED</topic><topic>Circuits</topic><topic>Cold atoms</topic><topic>Cold traps</topic><topic>continuous measurement</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Fault tolerance</topic><topic>Feedback</topic><topic>Fragility</topic><topic>quantum control</topic><topic>Quantum electrodynamics</topic><topic>quantum feedback</topic><topic>Quantum mechanics</topic><topic>superconducting qubits</topic><topic>Trajectory measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hacohen-Gourgy, S.</creatorcontrib><creatorcontrib>Martin, L. S.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in physics: X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hacohen-Gourgy, S.</au><au>Martin, L. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous measurements for control of superconducting quantum circuits</atitle><jtitle>Advances in physics: X</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><spage>1813626</spage><pages>1813626-</pages><issn>2374-6149</issn><eissn>2374-6149</eissn><abstract>Developments over the last two decades have opened the path towards quantum technologies in many quantum systems, such as cold atoms, trapped ions, cavity-quantum electrodynamics (QED), and circuit-QED. However, the fragility of quantum states to the effects of measurement and decoherence still poses one of the greatest challenges in quantum technology. An imperative capability in this path is quantum feedback, as it enhances the control possibilities and allows for prolonging coherence times through quantum error correction. While changing parameters from shot to shot of an experiment or procedure can be considered feedback, quantum mechanics also allows for the intriguing possibility of performing feedback operations during the measurement process itself. This broader approach to measurements leads to the concepts of weak measurement, quantum trajectories, and numerous types of feedback with no classical analogs. These types of processes are the primary focus of this review. We introduce the concept of quantum feedback in the context of circuit-QED, an experimental platform with significant potential in quantum feedback and technology. We then discuss several experiments and see how they elucidate the concepts of continuous measurements and feedback. We conclude with an overview of coherent feedback, with application to fault-tolerant error correction.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/23746149.2020.1813626</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2374-6149
ispartof Advances in physics: X, 2020-01, Vol.5 (1), p.1813626
issn 2374-6149
2374-6149
language eng
recordid cdi_proquest_journals_2458509884
source Taylor & Francis Open Access; Publicly Available Content Database
subjects Circuit-QED
Circuits
Cold atoms
Cold traps
continuous measurement
Error correction
Error correction & detection
Fault tolerance
Feedback
Fragility
quantum control
Quantum electrodynamics
quantum feedback
Quantum mechanics
superconducting qubits
Trajectory measurement
title Continuous measurements for control of superconducting quantum circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20measurements%20for%20control%20of%20superconducting%20quantum%20circuits&rft.jtitle=Advances%20in%20physics:%20X&rft.au=Hacohen-Gourgy,%20S.&rft.date=2020-01-01&rft.volume=5&rft.issue=1&rft.spage=1813626&rft.pages=1813626-&rft.issn=2374-6149&rft.eissn=2374-6149&rft_id=info:doi/10.1080/23746149.2020.1813626&rft_dat=%3Cproquest_doaj_%3E2458509884%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-fd094151cc8419c46e6596f2be7770aea62ed0d53ed51e59b63f29b2fb30dbba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458509884&rft_id=info:pmid/&rfr_iscdi=true