Loading…
The geochemical and geochronological implications of nanoscale trace-element clusters in rutile
The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still...
Saved in:
Published in: | Geology (Boulder) 2020-11, Vol.48 (11), p.1126-1130 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133 |
container_end_page | 1130 |
container_issue | 11 |
container_start_page | 1126 |
container_title | Geology (Boulder) |
container_volume | 48 |
creator | Verberne, R Reddy, S. M Saxey, D. W Fougerouse, D Rickard, W. D. A Plavsa, D Agangi, A Kylander-Clark, A. R. C |
description | The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still debated. To further this debate, we use laser-ablation-inductively coupled plasma-mass spectrometry and atom probe tomography to characterize the micro- to nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western Australia. At the >20 µm scale, there is no significant trace-element variation in single grains, and a concordant U-Pb crystallization age of 1872±6 Ma (2σ) shows no evidence of isotopic disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements (Al, Cr, Pb, and V) are observed. The 207Pb/206Pb ratio of 0.176±0.040 (2σ) obtained from clusters indicates that they formed after crystallization, potentially during regional metamorphism. We interpret the clusters to have formed by the entrapment of mobile trace elements in transient sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would affect the activation energy for volume diffusion of elements present in the cluster. The low number and density of clusters provides constraints on the time over which clusters formed, indicating that peak metamorphic temperatures are short-lived, |
doi_str_mv | 10.1130/G48017.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2459434589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459434589</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133</originalsourceid><addsrcrecordid>eNpNkEtLxDAQgIMouD7An1DwIkjXTJM27VEWXYUFL-s5pOlkt0uarEmL-O-N1oOneX3MDB8hN0CXAIw-rHlNQSzhhCyg4Swvqro4JQtKG8hFBeycXMR4oBR4KeoFkds9Zjv0eo9Dr5XNlOvmOnjnrd_9NvvhaFMy9t7FzJvMKedjGmA2BqUxR4sDujHTdoojhpj1LgvT2Fu8ImdG2YjXf_GSvD8_bVcv-eZt_bp63OSK8XrMDRiOOv3EABohVCsKo6qiKVuAjnOqhWl1w7hgQA10GupOa942wGvkHBi7JLfz3mPwHxPGUR78FFw6KQteJhG8rJtE3c2UDj7GgEYeQz-o8CWByh99ctYnIaH3M5pkRN2j0_jpg-3-7aUFlbQSrBHsG1mzcRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459434589</pqid></control><display><type>article</type><title>The geochemical and geochronological implications of nanoscale trace-element clusters in rutile</title><source>GeoScienceWorld</source><creator>Verberne, R ; Reddy, S. M ; Saxey, D. W ; Fougerouse, D ; Rickard, W. D. A ; Plavsa, D ; Agangi, A ; Kylander-Clark, A. R. C</creator><creatorcontrib>Verberne, R ; Reddy, S. M ; Saxey, D. W ; Fougerouse, D ; Rickard, W. D. A ; Plavsa, D ; Agangi, A ; Kylander-Clark, A. R. C</creatorcontrib><description>The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still debated. To further this debate, we use laser-ablation-inductively coupled plasma-mass spectrometry and atom probe tomography to characterize the micro- to nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western Australia. At the >20 µm scale, there is no significant trace-element variation in single grains, and a concordant U-Pb crystallization age of 1872±6 Ma (2σ) shows no evidence of isotopic disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements (Al, Cr, Pb, and V) are observed. The 207Pb/206Pb ratio of 0.176±0.040 (2σ) obtained from clusters indicates that they formed after crystallization, potentially during regional metamorphism. We interpret the clusters to have formed by the entrapment of mobile trace elements in transient sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would affect the activation energy for volume diffusion of elements present in the cluster. The low number and density of clusters provides constraints on the time over which clusters formed, indicating that peak metamorphic temperatures are short-lived, <10 m.y. events. Our results indicate that the use of trace elements to estimate volume diffusion in rutile is more complex than assuming a homogeneous medium.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G48017.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>Ablation ; absolute age ; Amphibolite facies ; Amphibolites ; atom probe tomography data ; Australasia ; Australia ; Capricorn Orogen ; chronology ; Clusters ; Crystallization ; dates ; Diffusion ; Entrapment ; facies ; Geochemistry ; Geochronology ; Geology ; ICP mass spectra ; Inductively coupled plasma mass spectrometry ; Information processing ; isotope ratios ; isotopes ; Laser ablation ; laser methods ; Lasers ; Lead ; Lead isotopes ; mass spectra ; Mass spectrometry ; Mass spectroscopy ; Mesoproterozoic ; metals ; metamorphic rocks ; Metamorphism ; Mobility ; Moogie Metamorphics ; nanoscale ; Orogeny ; oxides ; Pb-207/Pb-206 ; Precambrian ; Proterozoic ; Radiation ; Radiation damage ; regional metamorphism ; rock, sediment, soil ; Rutile ; spatial distribution ; spectra ; stable isotopes ; thermal history ; Tomography ; Trace elements ; U/Pb ; upper Precambrian ; Western Australia ; Zirconium</subject><ispartof>Geology (Boulder), 2020-11, Vol.48 (11), p.1126-1130</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Nov 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133</citedby><cites>FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G48017.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,38858,77567</link.rule.ids></links><search><creatorcontrib>Verberne, R</creatorcontrib><creatorcontrib>Reddy, S. M</creatorcontrib><creatorcontrib>Saxey, D. W</creatorcontrib><creatorcontrib>Fougerouse, D</creatorcontrib><creatorcontrib>Rickard, W. D. A</creatorcontrib><creatorcontrib>Plavsa, D</creatorcontrib><creatorcontrib>Agangi, A</creatorcontrib><creatorcontrib>Kylander-Clark, A. R. C</creatorcontrib><title>The geochemical and geochronological implications of nanoscale trace-element clusters in rutile</title><title>Geology (Boulder)</title><description>The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still debated. To further this debate, we use laser-ablation-inductively coupled plasma-mass spectrometry and atom probe tomography to characterize the micro- to nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western Australia. At the >20 µm scale, there is no significant trace-element variation in single grains, and a concordant U-Pb crystallization age of 1872±6 Ma (2σ) shows no evidence of isotopic disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements (Al, Cr, Pb, and V) are observed. The 207Pb/206Pb ratio of 0.176±0.040 (2σ) obtained from clusters indicates that they formed after crystallization, potentially during regional metamorphism. We interpret the clusters to have formed by the entrapment of mobile trace elements in transient sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would affect the activation energy for volume diffusion of elements present in the cluster. The low number and density of clusters provides constraints on the time over which clusters formed, indicating that peak metamorphic temperatures are short-lived, <10 m.y. events. Our results indicate that the use of trace elements to estimate volume diffusion in rutile is more complex than assuming a homogeneous medium.</description><subject>Ablation</subject><subject>absolute age</subject><subject>Amphibolite facies</subject><subject>Amphibolites</subject><subject>atom probe tomography data</subject><subject>Australasia</subject><subject>Australia</subject><subject>Capricorn Orogen</subject><subject>chronology</subject><subject>Clusters</subject><subject>Crystallization</subject><subject>dates</subject><subject>Diffusion</subject><subject>Entrapment</subject><subject>facies</subject><subject>Geochemistry</subject><subject>Geochronology</subject><subject>Geology</subject><subject>ICP mass spectra</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Information processing</subject><subject>isotope ratios</subject><subject>isotopes</subject><subject>Laser ablation</subject><subject>laser methods</subject><subject>Lasers</subject><subject>Lead</subject><subject>Lead isotopes</subject><subject>mass spectra</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mesoproterozoic</subject><subject>metals</subject><subject>metamorphic rocks</subject><subject>Metamorphism</subject><subject>Mobility</subject><subject>Moogie Metamorphics</subject><subject>nanoscale</subject><subject>Orogeny</subject><subject>oxides</subject><subject>Pb-207/Pb-206</subject><subject>Precambrian</subject><subject>Proterozoic</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>regional metamorphism</subject><subject>rock, sediment, soil</subject><subject>Rutile</subject><subject>spatial distribution</subject><subject>spectra</subject><subject>stable isotopes</subject><subject>thermal history</subject><subject>Tomography</subject><subject>Trace elements</subject><subject>U/Pb</subject><subject>upper Precambrian</subject><subject>Western Australia</subject><subject>Zirconium</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLxDAQgIMouD7An1DwIkjXTJM27VEWXYUFL-s5pOlkt0uarEmL-O-N1oOneX3MDB8hN0CXAIw-rHlNQSzhhCyg4Swvqro4JQtKG8hFBeycXMR4oBR4KeoFkds9Zjv0eo9Dr5XNlOvmOnjnrd_9NvvhaFMy9t7FzJvMKedjGmA2BqUxR4sDujHTdoojhpj1LgvT2Fu8ImdG2YjXf_GSvD8_bVcv-eZt_bp63OSK8XrMDRiOOv3EABohVCsKo6qiKVuAjnOqhWl1w7hgQA10GupOa942wGvkHBi7JLfz3mPwHxPGUR78FFw6KQteJhG8rJtE3c2UDj7GgEYeQz-o8CWByh99ctYnIaH3M5pkRN2j0_jpg-3-7aUFlbQSrBHsG1mzcRA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Verberne, R</creator><creator>Reddy, S. M</creator><creator>Saxey, D. W</creator><creator>Fougerouse, D</creator><creator>Rickard, W. D. A</creator><creator>Plavsa, D</creator><creator>Agangi, A</creator><creator>Kylander-Clark, A. R. C</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20201101</creationdate><title>The geochemical and geochronological implications of nanoscale trace-element clusters in rutile</title><author>Verberne, R ; Reddy, S. M ; Saxey, D. W ; Fougerouse, D ; Rickard, W. D. A ; Plavsa, D ; Agangi, A ; Kylander-Clark, A. R. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>absolute age</topic><topic>Amphibolite facies</topic><topic>Amphibolites</topic><topic>atom probe tomography data</topic><topic>Australasia</topic><topic>Australia</topic><topic>Capricorn Orogen</topic><topic>chronology</topic><topic>Clusters</topic><topic>Crystallization</topic><topic>dates</topic><topic>Diffusion</topic><topic>Entrapment</topic><topic>facies</topic><topic>Geochemistry</topic><topic>Geochronology</topic><topic>Geology</topic><topic>ICP mass spectra</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Information processing</topic><topic>isotope ratios</topic><topic>isotopes</topic><topic>Laser ablation</topic><topic>laser methods</topic><topic>Lasers</topic><topic>Lead</topic><topic>Lead isotopes</topic><topic>mass spectra</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mesoproterozoic</topic><topic>metals</topic><topic>metamorphic rocks</topic><topic>Metamorphism</topic><topic>Mobility</topic><topic>Moogie Metamorphics</topic><topic>nanoscale</topic><topic>Orogeny</topic><topic>oxides</topic><topic>Pb-207/Pb-206</topic><topic>Precambrian</topic><topic>Proterozoic</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>regional metamorphism</topic><topic>rock, sediment, soil</topic><topic>Rutile</topic><topic>spatial distribution</topic><topic>spectra</topic><topic>stable isotopes</topic><topic>thermal history</topic><topic>Tomography</topic><topic>Trace elements</topic><topic>U/Pb</topic><topic>upper Precambrian</topic><topic>Western Australia</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verberne, R</creatorcontrib><creatorcontrib>Reddy, S. M</creatorcontrib><creatorcontrib>Saxey, D. W</creatorcontrib><creatorcontrib>Fougerouse, D</creatorcontrib><creatorcontrib>Rickard, W. D. A</creatorcontrib><creatorcontrib>Plavsa, D</creatorcontrib><creatorcontrib>Agangi, A</creatorcontrib><creatorcontrib>Kylander-Clark, A. R. C</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verberne, R</au><au>Reddy, S. M</au><au>Saxey, D. W</au><au>Fougerouse, D</au><au>Rickard, W. D. A</au><au>Plavsa, D</au><au>Agangi, A</au><au>Kylander-Clark, A. R. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geochemical and geochronological implications of nanoscale trace-element clusters in rutile</atitle><jtitle>Geology (Boulder)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>48</volume><issue>11</issue><spage>1126</spage><epage>1130</epage><pages>1126-1130</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still debated. To further this debate, we use laser-ablation-inductively coupled plasma-mass spectrometry and atom probe tomography to characterize the micro- to nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western Australia. At the >20 µm scale, there is no significant trace-element variation in single grains, and a concordant U-Pb crystallization age of 1872±6 Ma (2σ) shows no evidence of isotopic disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements (Al, Cr, Pb, and V) are observed. The 207Pb/206Pb ratio of 0.176±0.040 (2σ) obtained from clusters indicates that they formed after crystallization, potentially during regional metamorphism. We interpret the clusters to have formed by the entrapment of mobile trace elements in transient sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would affect the activation energy for volume diffusion of elements present in the cluster. The low number and density of clusters provides constraints on the time over which clusters formed, indicating that peak metamorphic temperatures are short-lived, <10 m.y. events. Our results indicate that the use of trace elements to estimate volume diffusion in rutile is more complex than assuming a homogeneous medium.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G48017.1</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7613 |
ispartof | Geology (Boulder), 2020-11, Vol.48 (11), p.1126-1130 |
issn | 0091-7613 1943-2682 |
language | eng |
recordid | cdi_proquest_journals_2459434589 |
source | GeoScienceWorld |
subjects | Ablation absolute age Amphibolite facies Amphibolites atom probe tomography data Australasia Australia Capricorn Orogen chronology Clusters Crystallization dates Diffusion Entrapment facies Geochemistry Geochronology Geology ICP mass spectra Inductively coupled plasma mass spectrometry Information processing isotope ratios isotopes Laser ablation laser methods Lasers Lead Lead isotopes mass spectra Mass spectrometry Mass spectroscopy Mesoproterozoic metals metamorphic rocks Metamorphism Mobility Moogie Metamorphics nanoscale Orogeny oxides Pb-207/Pb-206 Precambrian Proterozoic Radiation Radiation damage regional metamorphism rock, sediment, soil Rutile spatial distribution spectra stable isotopes thermal history Tomography Trace elements U/Pb upper Precambrian Western Australia Zirconium |
title | The geochemical and geochronological implications of nanoscale trace-element clusters in rutile |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geochemical%20and%20geochronological%20implications%20of%20nanoscale%20trace-element%20clusters%20in%20rutile&rft.jtitle=Geology%20(Boulder)&rft.au=Verberne,%20R&rft.date=2020-11-01&rft.volume=48&rft.issue=11&rft.spage=1126&rft.epage=1130&rft.pages=1126-1130&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G48017.1&rft_dat=%3Cproquest_cross%3E2459434589%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2459434589&rft_id=info:pmid/&rfr_iscdi=true |