Loading…

The geochemical and geochronological implications of nanoscale trace-element clusters in rutile

The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2020-11, Vol.48 (11), p.1126-1130
Main Authors: Verberne, R, Reddy, S. M, Saxey, D. W, Fougerouse, D, Rickard, W. D. A, Plavsa, D, Agangi, A, Kylander-Clark, A. R. C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133
cites cdi_FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133
container_end_page 1130
container_issue 11
container_start_page 1126
container_title Geology (Boulder)
container_volume 48
creator Verberne, R
Reddy, S. M
Saxey, D. W
Fougerouse, D
Rickard, W. D. A
Plavsa, D
Agangi, A
Kylander-Clark, A. R. C
description The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still debated. To further this debate, we use laser-ablation-inductively coupled plasma-mass spectrometry and atom probe tomography to characterize the micro- to nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western Australia. At the >20 µm scale, there is no significant trace-element variation in single grains, and a concordant U-Pb crystallization age of 1872±6 Ma (2σ) shows no evidence of isotopic disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements (Al, Cr, Pb, and V) are observed. The 207Pb/206Pb ratio of 0.176±0.040 (2σ) obtained from clusters indicates that they formed after crystallization, potentially during regional metamorphism. We interpret the clusters to have formed by the entrapment of mobile trace elements in transient sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would affect the activation energy for volume diffusion of elements present in the cluster. The low number and density of clusters provides constraints on the time over which clusters formed, indicating that peak metamorphic temperatures are short-lived,
doi_str_mv 10.1130/G48017.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2459434589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459434589</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133</originalsourceid><addsrcrecordid>eNpNkEtLxDAQgIMouD7An1DwIkjXTJM27VEWXYUFL-s5pOlkt0uarEmL-O-N1oOneX3MDB8hN0CXAIw-rHlNQSzhhCyg4Swvqro4JQtKG8hFBeycXMR4oBR4KeoFkds9Zjv0eo9Dr5XNlOvmOnjnrd_9NvvhaFMy9t7FzJvMKedjGmA2BqUxR4sDujHTdoojhpj1LgvT2Fu8ImdG2YjXf_GSvD8_bVcv-eZt_bp63OSK8XrMDRiOOv3EABohVCsKo6qiKVuAjnOqhWl1w7hgQA10GupOa942wGvkHBi7JLfz3mPwHxPGUR78FFw6KQteJhG8rJtE3c2UDj7GgEYeQz-o8CWByh99ctYnIaH3M5pkRN2j0_jpg-3-7aUFlbQSrBHsG1mzcRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459434589</pqid></control><display><type>article</type><title>The geochemical and geochronological implications of nanoscale trace-element clusters in rutile</title><source>GeoScienceWorld</source><creator>Verberne, R ; Reddy, S. M ; Saxey, D. W ; Fougerouse, D ; Rickard, W. D. A ; Plavsa, D ; Agangi, A ; Kylander-Clark, A. R. C</creator><creatorcontrib>Verberne, R ; Reddy, S. M ; Saxey, D. W ; Fougerouse, D ; Rickard, W. D. A ; Plavsa, D ; Agangi, A ; Kylander-Clark, A. R. C</creatorcontrib><description>The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still debated. To further this debate, we use laser-ablation-inductively coupled plasma-mass spectrometry and atom probe tomography to characterize the micro- to nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western Australia. At the &gt;20 µm scale, there is no significant trace-element variation in single grains, and a concordant U-Pb crystallization age of 1872±6 Ma (2σ) shows no evidence of isotopic disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements (Al, Cr, Pb, and V) are observed. The 207Pb/206Pb ratio of 0.176±0.040 (2σ) obtained from clusters indicates that they formed after crystallization, potentially during regional metamorphism. We interpret the clusters to have formed by the entrapment of mobile trace elements in transient sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would affect the activation energy for volume diffusion of elements present in the cluster. The low number and density of clusters provides constraints on the time over which clusters formed, indicating that peak metamorphic temperatures are short-lived, &lt;10 m.y. events. Our results indicate that the use of trace elements to estimate volume diffusion in rutile is more complex than assuming a homogeneous medium.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G48017.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>Ablation ; absolute age ; Amphibolite facies ; Amphibolites ; atom probe tomography data ; Australasia ; Australia ; Capricorn Orogen ; chronology ; Clusters ; Crystallization ; dates ; Diffusion ; Entrapment ; facies ; Geochemistry ; Geochronology ; Geology ; ICP mass spectra ; Inductively coupled plasma mass spectrometry ; Information processing ; isotope ratios ; isotopes ; Laser ablation ; laser methods ; Lasers ; Lead ; Lead isotopes ; mass spectra ; Mass spectrometry ; Mass spectroscopy ; Mesoproterozoic ; metals ; metamorphic rocks ; Metamorphism ; Mobility ; Moogie Metamorphics ; nanoscale ; Orogeny ; oxides ; Pb-207/Pb-206 ; Precambrian ; Proterozoic ; Radiation ; Radiation damage ; regional metamorphism ; rock, sediment, soil ; Rutile ; spatial distribution ; spectra ; stable isotopes ; thermal history ; Tomography ; Trace elements ; U/Pb ; upper Precambrian ; Western Australia ; Zirconium</subject><ispartof>Geology (Boulder), 2020-11, Vol.48 (11), p.1126-1130</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Nov 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133</citedby><cites>FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G48017.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,38858,77567</link.rule.ids></links><search><creatorcontrib>Verberne, R</creatorcontrib><creatorcontrib>Reddy, S. M</creatorcontrib><creatorcontrib>Saxey, D. W</creatorcontrib><creatorcontrib>Fougerouse, D</creatorcontrib><creatorcontrib>Rickard, W. D. A</creatorcontrib><creatorcontrib>Plavsa, D</creatorcontrib><creatorcontrib>Agangi, A</creatorcontrib><creatorcontrib>Kylander-Clark, A. R. C</creatorcontrib><title>The geochemical and geochronological implications of nanoscale trace-element clusters in rutile</title><title>Geology (Boulder)</title><description>The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still debated. To further this debate, we use laser-ablation-inductively coupled plasma-mass spectrometry and atom probe tomography to characterize the micro- to nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western Australia. At the &gt;20 µm scale, there is no significant trace-element variation in single grains, and a concordant U-Pb crystallization age of 1872±6 Ma (2σ) shows no evidence of isotopic disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements (Al, Cr, Pb, and V) are observed. The 207Pb/206Pb ratio of 0.176±0.040 (2σ) obtained from clusters indicates that they formed after crystallization, potentially during regional metamorphism. We interpret the clusters to have formed by the entrapment of mobile trace elements in transient sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would affect the activation energy for volume diffusion of elements present in the cluster. The low number and density of clusters provides constraints on the time over which clusters formed, indicating that peak metamorphic temperatures are short-lived, &lt;10 m.y. events. Our results indicate that the use of trace elements to estimate volume diffusion in rutile is more complex than assuming a homogeneous medium.</description><subject>Ablation</subject><subject>absolute age</subject><subject>Amphibolite facies</subject><subject>Amphibolites</subject><subject>atom probe tomography data</subject><subject>Australasia</subject><subject>Australia</subject><subject>Capricorn Orogen</subject><subject>chronology</subject><subject>Clusters</subject><subject>Crystallization</subject><subject>dates</subject><subject>Diffusion</subject><subject>Entrapment</subject><subject>facies</subject><subject>Geochemistry</subject><subject>Geochronology</subject><subject>Geology</subject><subject>ICP mass spectra</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Information processing</subject><subject>isotope ratios</subject><subject>isotopes</subject><subject>Laser ablation</subject><subject>laser methods</subject><subject>Lasers</subject><subject>Lead</subject><subject>Lead isotopes</subject><subject>mass spectra</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mesoproterozoic</subject><subject>metals</subject><subject>metamorphic rocks</subject><subject>Metamorphism</subject><subject>Mobility</subject><subject>Moogie Metamorphics</subject><subject>nanoscale</subject><subject>Orogeny</subject><subject>oxides</subject><subject>Pb-207/Pb-206</subject><subject>Precambrian</subject><subject>Proterozoic</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>regional metamorphism</subject><subject>rock, sediment, soil</subject><subject>Rutile</subject><subject>spatial distribution</subject><subject>spectra</subject><subject>stable isotopes</subject><subject>thermal history</subject><subject>Tomography</subject><subject>Trace elements</subject><subject>U/Pb</subject><subject>upper Precambrian</subject><subject>Western Australia</subject><subject>Zirconium</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLxDAQgIMouD7An1DwIkjXTJM27VEWXYUFL-s5pOlkt0uarEmL-O-N1oOneX3MDB8hN0CXAIw-rHlNQSzhhCyg4Swvqro4JQtKG8hFBeycXMR4oBR4KeoFkds9Zjv0eo9Dr5XNlOvmOnjnrd_9NvvhaFMy9t7FzJvMKedjGmA2BqUxR4sDujHTdoojhpj1LgvT2Fu8ImdG2YjXf_GSvD8_bVcv-eZt_bp63OSK8XrMDRiOOv3EABohVCsKo6qiKVuAjnOqhWl1w7hgQA10GupOa942wGvkHBi7JLfz3mPwHxPGUR78FFw6KQteJhG8rJtE3c2UDj7GgEYeQz-o8CWByh99ctYnIaH3M5pkRN2j0_jpg-3-7aUFlbQSrBHsG1mzcRA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Verberne, R</creator><creator>Reddy, S. M</creator><creator>Saxey, D. W</creator><creator>Fougerouse, D</creator><creator>Rickard, W. D. A</creator><creator>Plavsa, D</creator><creator>Agangi, A</creator><creator>Kylander-Clark, A. R. C</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20201101</creationdate><title>The geochemical and geochronological implications of nanoscale trace-element clusters in rutile</title><author>Verberne, R ; Reddy, S. M ; Saxey, D. W ; Fougerouse, D ; Rickard, W. D. A ; Plavsa, D ; Agangi, A ; Kylander-Clark, A. R. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>absolute age</topic><topic>Amphibolite facies</topic><topic>Amphibolites</topic><topic>atom probe tomography data</topic><topic>Australasia</topic><topic>Australia</topic><topic>Capricorn Orogen</topic><topic>chronology</topic><topic>Clusters</topic><topic>Crystallization</topic><topic>dates</topic><topic>Diffusion</topic><topic>Entrapment</topic><topic>facies</topic><topic>Geochemistry</topic><topic>Geochronology</topic><topic>Geology</topic><topic>ICP mass spectra</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Information processing</topic><topic>isotope ratios</topic><topic>isotopes</topic><topic>Laser ablation</topic><topic>laser methods</topic><topic>Lasers</topic><topic>Lead</topic><topic>Lead isotopes</topic><topic>mass spectra</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mesoproterozoic</topic><topic>metals</topic><topic>metamorphic rocks</topic><topic>Metamorphism</topic><topic>Mobility</topic><topic>Moogie Metamorphics</topic><topic>nanoscale</topic><topic>Orogeny</topic><topic>oxides</topic><topic>Pb-207/Pb-206</topic><topic>Precambrian</topic><topic>Proterozoic</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>regional metamorphism</topic><topic>rock, sediment, soil</topic><topic>Rutile</topic><topic>spatial distribution</topic><topic>spectra</topic><topic>stable isotopes</topic><topic>thermal history</topic><topic>Tomography</topic><topic>Trace elements</topic><topic>U/Pb</topic><topic>upper Precambrian</topic><topic>Western Australia</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verberne, R</creatorcontrib><creatorcontrib>Reddy, S. M</creatorcontrib><creatorcontrib>Saxey, D. W</creatorcontrib><creatorcontrib>Fougerouse, D</creatorcontrib><creatorcontrib>Rickard, W. D. A</creatorcontrib><creatorcontrib>Plavsa, D</creatorcontrib><creatorcontrib>Agangi, A</creatorcontrib><creatorcontrib>Kylander-Clark, A. R. C</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verberne, R</au><au>Reddy, S. M</au><au>Saxey, D. W</au><au>Fougerouse, D</au><au>Rickard, W. D. A</au><au>Plavsa, D</au><au>Agangi, A</au><au>Kylander-Clark, A. R. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geochemical and geochronological implications of nanoscale trace-element clusters in rutile</atitle><jtitle>Geology (Boulder)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>48</volume><issue>11</issue><spage>1126</spage><epage>1130</epage><pages>1126-1130</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still debated. To further this debate, we use laser-ablation-inductively coupled plasma-mass spectrometry and atom probe tomography to characterize the micro- to nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western Australia. At the &gt;20 µm scale, there is no significant trace-element variation in single grains, and a concordant U-Pb crystallization age of 1872±6 Ma (2σ) shows no evidence of isotopic disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements (Al, Cr, Pb, and V) are observed. The 207Pb/206Pb ratio of 0.176±0.040 (2σ) obtained from clusters indicates that they formed after crystallization, potentially during regional metamorphism. We interpret the clusters to have formed by the entrapment of mobile trace elements in transient sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would affect the activation energy for volume diffusion of elements present in the cluster. The low number and density of clusters provides constraints on the time over which clusters formed, indicating that peak metamorphic temperatures are short-lived, &lt;10 m.y. events. Our results indicate that the use of trace elements to estimate volume diffusion in rutile is more complex than assuming a homogeneous medium.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G48017.1</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2020-11, Vol.48 (11), p.1126-1130
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_journals_2459434589
source GeoScienceWorld
subjects Ablation
absolute age
Amphibolite facies
Amphibolites
atom probe tomography data
Australasia
Australia
Capricorn Orogen
chronology
Clusters
Crystallization
dates
Diffusion
Entrapment
facies
Geochemistry
Geochronology
Geology
ICP mass spectra
Inductively coupled plasma mass spectrometry
Information processing
isotope ratios
isotopes
Laser ablation
laser methods
Lasers
Lead
Lead isotopes
mass spectra
Mass spectrometry
Mass spectroscopy
Mesoproterozoic
metals
metamorphic rocks
Metamorphism
Mobility
Moogie Metamorphics
nanoscale
Orogeny
oxides
Pb-207/Pb-206
Precambrian
Proterozoic
Radiation
Radiation damage
regional metamorphism
rock, sediment, soil
Rutile
spatial distribution
spectra
stable isotopes
thermal history
Tomography
Trace elements
U/Pb
upper Precambrian
Western Australia
Zirconium
title The geochemical and geochronological implications of nanoscale trace-element clusters in rutile
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geochemical%20and%20geochronological%20implications%20of%20nanoscale%20trace-element%20clusters%20in%20rutile&rft.jtitle=Geology%20(Boulder)&rft.au=Verberne,%20R&rft.date=2020-11-01&rft.volume=48&rft.issue=11&rft.spage=1126&rft.epage=1130&rft.pages=1126-1130&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G48017.1&rft_dat=%3Cproquest_cross%3E2459434589%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-f1f4ec145311977ab72fa6295b11d440c7fbc9347310f1dc18dcc4b9148e44133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2459434589&rft_id=info:pmid/&rfr_iscdi=true