Loading…
Development of Scanning Line Tool Path Generation Algorithm Using Boundary Position Information of Approximate Polyhedron of Complex Molds
In the manufacturing industry, molds are required for mass production operations, and the industry’s recent small lot, multi-product production systems call for such molds to be made by NC machine tools in short periods of time. The tool path point coordinates of NC machine tools are derived by geom...
Saved in:
Published in: | International journal of automation technology 2020-05, Vol.14 (3), p.491-499 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the manufacturing industry, molds are required for mass production operations, and the industry’s recent small lot, multi-product production systems call for such molds to be made by NC machine tools in short periods of time. The tool path point coordinates of NC machine tools are derived by geometric computations, which are used in turn to derive the polyhedron-approximated mold surface and the contact positions of the tool. In the conventional method, however, placing surplus tool path points on the planar section makes it difficult to acquire the boundary position coordinate values in the vicinity of the boundaries of the polyhedrons that constitute the curved surface, resulting in errors in the path point coordinates for the polyhedron-approximated shape of the mold surface. In this study, therefore, we have developed CAM algorithms that can reduce the tool path errors and suppress the number of tool path points by not deriving the path point coordinates in the linearly approximated section. This is done by using the boundary information of the approximate polyhedrons that constitute the concave section of the mold model. |
---|---|
ISSN: | 1881-7629 1883-8022 |
DOI: | 10.20965/ijat.2020.p0491 |