Loading…

Development of Scanning Line Tool Path Generation Algorithm Using Boundary Position Information of Approximate Polyhedron of Complex Molds

In the manufacturing industry, molds are required for mass production operations, and the industry’s recent small lot, multi-product production systems call for such molds to be made by NC machine tools in short periods of time. The tool path point coordinates of NC machine tools are derived by geom...

Full description

Saved in:
Bibliographic Details
Published in:International journal of automation technology 2020-05, Vol.14 (3), p.491-499
Main Authors: Saito, Yuki, Kaneko, Jun’ichi, Abe, Takeyuki, Horio, Kenichiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the manufacturing industry, molds are required for mass production operations, and the industry’s recent small lot, multi-product production systems call for such molds to be made by NC machine tools in short periods of time. The tool path point coordinates of NC machine tools are derived by geometric computations, which are used in turn to derive the polyhedron-approximated mold surface and the contact positions of the tool. In the conventional method, however, placing surplus tool path points on the planar section makes it difficult to acquire the boundary position coordinate values in the vicinity of the boundaries of the polyhedrons that constitute the curved surface, resulting in errors in the path point coordinates for the polyhedron-approximated shape of the mold surface. In this study, therefore, we have developed CAM algorithms that can reduce the tool path errors and suppress the number of tool path points by not deriving the path point coordinates in the linearly approximated section. This is done by using the boundary information of the approximate polyhedrons that constitute the concave section of the mold model.
ISSN:1881-7629
1883-8022
DOI:10.20965/ijat.2020.p0491