Loading…

Metrics of Horowitz–Myers type with the negative constant scalar curvature

We construct a one-parameter family of complete metrics of Horowitz–Myers type with the negative constant scalar curvature. We also verify a positive energy conjecture of Horowitz and Myers for these metrics.

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2020-11, Vol.61 (11)
Main Authors: Liang, Zhuobin, Zhang, Xiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-e4ec230b68775a1334dc81353dbadeea74ee20f2592d8b4df93619cfa4f6cad03
cites cdi_FETCH-LOGICAL-c327t-e4ec230b68775a1334dc81353dbadeea74ee20f2592d8b4df93619cfa4f6cad03
container_end_page
container_issue 11
container_start_page
container_title Journal of mathematical physics
container_volume 61
creator Liang, Zhuobin
Zhang, Xiao
description We construct a one-parameter family of complete metrics of Horowitz–Myers type with the negative constant scalar curvature. We also verify a positive energy conjecture of Horowitz and Myers for these metrics.
doi_str_mv 10.1063/5.0032241
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460173216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460173216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-e4ec230b68775a1334dc81353dbadeea74ee20f2592d8b4df93619cfa4f6cad03</originalsourceid><addsrcrecordid>eNqd0M9KAzEQBvAgCtbqwTcIeFLYmn-bzR6lqBVavOg5pNmJ3VI3a5KtrCffwTf0SVxpwbungeHHN8yH0DklE0okv84nhHDGBD1AI0pUmRUyV4doRAhjGRNKHaOTGNeEUKqEGKH5AlKobcTe4ZkP_r1OH9-fX4seQsSpbwEPmxVOK8ANvJhUbwFb38RkmoSjNRsTsO3C1qQuwCk6cmYT4Ww_x-j57vZpOsvmj_cP05t5ZjkrUgYCLONkKVVR5IZyLiqrKM95tTQVgCkEACOO5SWr1FJUruSSltYZ4aQ1FeFjdLHLbYN_6yAmvfZdaIaTmglJaMEZlYO63CkbfIwBnG5D_WpCrynRv2XpXO_LGuzVzkZbp-FL3_wPb334g7qtHP8BbTd5ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460173216</pqid></control><display><type>article</type><title>Metrics of Horowitz–Myers type with the negative constant scalar curvature</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Liang, Zhuobin ; Zhang, Xiao</creator><creatorcontrib>Liang, Zhuobin ; Zhang, Xiao</creatorcontrib><description>We construct a one-parameter family of complete metrics of Horowitz–Myers type with the negative constant scalar curvature. We also verify a positive energy conjecture of Horowitz and Myers for these metrics.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0032241</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Curvature ; Physics</subject><ispartof>Journal of mathematical physics, 2020-11, Vol.61 (11)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-e4ec230b68775a1334dc81353dbadeea74ee20f2592d8b4df93619cfa4f6cad03</citedby><cites>FETCH-LOGICAL-c327t-e4ec230b68775a1334dc81353dbadeea74ee20f2592d8b4df93619cfa4f6cad03</cites><orcidid>0000-0002-1576-0884 ; 0000-0001-5893-7523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0032241$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76255</link.rule.ids></links><search><creatorcontrib>Liang, Zhuobin</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><title>Metrics of Horowitz–Myers type with the negative constant scalar curvature</title><title>Journal of mathematical physics</title><description>We construct a one-parameter family of complete metrics of Horowitz–Myers type with the negative constant scalar curvature. We also verify a positive energy conjecture of Horowitz and Myers for these metrics.</description><subject>Curvature</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0M9KAzEQBvAgCtbqwTcIeFLYmn-bzR6lqBVavOg5pNmJ3VI3a5KtrCffwTf0SVxpwbungeHHN8yH0DklE0okv84nhHDGBD1AI0pUmRUyV4doRAhjGRNKHaOTGNeEUKqEGKH5AlKobcTe4ZkP_r1OH9-fX4seQsSpbwEPmxVOK8ANvJhUbwFb38RkmoSjNRsTsO3C1qQuwCk6cmYT4Ww_x-j57vZpOsvmj_cP05t5ZjkrUgYCLONkKVVR5IZyLiqrKM95tTQVgCkEACOO5SWr1FJUruSSltYZ4aQ1FeFjdLHLbYN_6yAmvfZdaIaTmglJaMEZlYO63CkbfIwBnG5D_WpCrynRv2XpXO_LGuzVzkZbp-FL3_wPb334g7qtHP8BbTd5ew</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Liang, Zhuobin</creator><creator>Zhang, Xiao</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1576-0884</orcidid><orcidid>https://orcid.org/0000-0001-5893-7523</orcidid></search><sort><creationdate>20201101</creationdate><title>Metrics of Horowitz–Myers type with the negative constant scalar curvature</title><author>Liang, Zhuobin ; Zhang, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-e4ec230b68775a1334dc81353dbadeea74ee20f2592d8b4df93619cfa4f6cad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Curvature</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Zhuobin</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Zhuobin</au><au>Zhang, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metrics of Horowitz–Myers type with the negative constant scalar curvature</atitle><jtitle>Journal of mathematical physics</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>61</volume><issue>11</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We construct a one-parameter family of complete metrics of Horowitz–Myers type with the negative constant scalar curvature. We also verify a positive energy conjecture of Horowitz and Myers for these metrics.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0032241</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1576-0884</orcidid><orcidid>https://orcid.org/0000-0001-5893-7523</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2020-11, Vol.61 (11)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2460173216
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Curvature
Physics
title Metrics of Horowitz–Myers type with the negative constant scalar curvature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metrics%20of%20Horowitz%E2%80%93Myers%20type%20with%20the%20negative%20constant%20scalar%20curvature&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Liang,%20Zhuobin&rft.date=2020-11-01&rft.volume=61&rft.issue=11&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0032241&rft_dat=%3Cproquest_cross%3E2460173216%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-e4ec230b68775a1334dc81353dbadeea74ee20f2592d8b4df93619cfa4f6cad03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460173216&rft_id=info:pmid/&rfr_iscdi=true