Loading…
Research on Reliability for Servo Turret Based on Vibration Transmission Path System with Stiffness Degradation Model
The stiffness degradation of the servo turret will inevitably lead to accuracy reduction of the cutter head and the tool change. Considering the degradation process of servo turret with stiffness, by introducing the stiffness cumulative damage theory into the vibration differential equation, combine...
Saved in:
Published in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stiffness degradation of the servo turret will inevitably lead to accuracy reduction of the cutter head and the tool change. Considering the degradation process of servo turret with stiffness, by introducing the stiffness cumulative damage theory into the vibration differential equation, combined with stochastic finite element method and reliability theory, the mathematical model of the reliability and reliability sensitivity for vibration transmission path system with random parameters was established. Taking a typical power servo turret for example, the reliability and the reliability sensitivity to each random parameter at the mean value with the excitation frequency and time were obtained. The results showed that the shift of the reliability and reliability sensitivity to random parameters with time was caused by the stiffness degradation, the peak value of reliability sensitivity fluctuated with time, and the peak value in the frequency domain at the initial time was not necessarily the maximum value in the time domain. The accuracy of the proposed method was further proved by the Monte Carlo method. Optimizing sensitive parameters could enhance the system stability and effectively prevent the resonance failure caused by the change of the resonance region. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/3764546 |