Loading…
The Optical Spectrum of Au2
The electronic structure of the Au2+ cation is essential for understanding its catalytic activity. We present the optical spectrum of mass‐selected Au2+ measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290–450 nm range (at ca. 440 and ca. 325 n...
Saved in:
Published in: | Angewandte Chemie 2020-11, Vol.132 (48), p.21587-21592 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 21592 |
container_issue | 48 |
container_start_page | 21587 |
container_title | Angewandte Chemie |
container_volume | 132 |
creator | Förstel, Marko Pollow, Kai Mario Saroukh, Karim Najib, Este Ainun Mitric, Roland Dopfer, Otto |
description | The electronic structure of the Au2+ cation is essential for understanding its catalytic activity. We present the optical spectrum of mass‐selected Au2+ measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290–450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin‐orbit coupling. The experimental spectra are compared to high‐level quantum‐chemical calculations at the CASSCF‐MRCI level including spin‐orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2+‐like diatomic molecular ion strictly requires multireference and relativistic treatment including spin‐orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation.
The optical spectrum of the prototypical diatomic Au2+ cation is presented in high quality. The measured spectrum of this seemingly simple H2+‐like cation cannot be explained by standard TD‐DFT methods but requires relativistic multireference treatment with spin‐orbit coupling. |
doi_str_mv | 10.1002/ange.202011337 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2460756362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460756362</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1187-c575b6f89918f57fb6ab563475fbd57ff51a7801de8a2ac65a74f50ea2e1c743</originalsourceid><addsrcrecordid>eNo9j0tLw0AUhQdRMFa3btwEXKfeO687WYZSq1DswuyHSTqjKWkT80D6702pdHU4cPgOH2OPCHME4C_u8OXnHDggCkFXLELFMRGk6JpFAFImhsv0lt31_Q4ANKc0Yk_5t4837VCVro4_W18O3biPmxBnI79nN8HVvX_4zxnLX5f54i1Zb1bvi2ydtIiGklKRKnQwaYomKAqFdoXSQpIKxXbqQaEjA7j1xnFXauVIBgXecY8lSTFjz2ds2zU_o-8Hu2vG7jA9Wi410MTSfFql59VvVfujbbtq77qjRbAneXuStxd5m32slpcm_gDDu01U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460756362</pqid></control><display><type>article</type><title>The Optical Spectrum of Au2</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Förstel, Marko ; Pollow, Kai Mario ; Saroukh, Karim ; Najib, Este Ainun ; Mitric, Roland ; Dopfer, Otto</creator><creatorcontrib>Förstel, Marko ; Pollow, Kai Mario ; Saroukh, Karim ; Najib, Este Ainun ; Mitric, Roland ; Dopfer, Otto</creatorcontrib><description>The electronic structure of the Au2+ cation is essential for understanding its catalytic activity. We present the optical spectrum of mass‐selected Au2+ measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290–450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin‐orbit coupling. The experimental spectra are compared to high‐level quantum‐chemical calculations at the CASSCF‐MRCI level including spin‐orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2+‐like diatomic molecular ion strictly requires multireference and relativistic treatment including spin‐orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation.
The optical spectrum of the prototypical diatomic Au2+ cation is presented in high quality. The measured spectrum of this seemingly simple H2+‐like cation cannot be explained by standard TD‐DFT methods but requires relativistic multireference treatment with spin‐orbit coupling.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202011337</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalytic activity ; Cations ; Chemistry ; Coupling (molecular) ; Electron states ; Electronic structure ; electronic structure calculations ; gold ; Mathematical analysis ; Molecular ions ; optical spectroscopy ; Photodissociation ; Spectroscopy ; Spectrum analysis</subject><ispartof>Angewandte Chemie, 2020-11, Vol.132 (48), p.21587-21592</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3630-9494 ; 0000-0002-9834-4404 ; 0000-0002-4941-0436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Förstel, Marko</creatorcontrib><creatorcontrib>Pollow, Kai Mario</creatorcontrib><creatorcontrib>Saroukh, Karim</creatorcontrib><creatorcontrib>Najib, Este Ainun</creatorcontrib><creatorcontrib>Mitric, Roland</creatorcontrib><creatorcontrib>Dopfer, Otto</creatorcontrib><title>The Optical Spectrum of Au2</title><title>Angewandte Chemie</title><description>The electronic structure of the Au2+ cation is essential for understanding its catalytic activity. We present the optical spectrum of mass‐selected Au2+ measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290–450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin‐orbit coupling. The experimental spectra are compared to high‐level quantum‐chemical calculations at the CASSCF‐MRCI level including spin‐orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2+‐like diatomic molecular ion strictly requires multireference and relativistic treatment including spin‐orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation.
The optical spectrum of the prototypical diatomic Au2+ cation is presented in high quality. The measured spectrum of this seemingly simple H2+‐like cation cannot be explained by standard TD‐DFT methods but requires relativistic multireference treatment with spin‐orbit coupling.</description><subject>Catalytic activity</subject><subject>Cations</subject><subject>Chemistry</subject><subject>Coupling (molecular)</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>electronic structure calculations</subject><subject>gold</subject><subject>Mathematical analysis</subject><subject>Molecular ions</subject><subject>optical spectroscopy</subject><subject>Photodissociation</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9j0tLw0AUhQdRMFa3btwEXKfeO687WYZSq1DswuyHSTqjKWkT80D6702pdHU4cPgOH2OPCHME4C_u8OXnHDggCkFXLELFMRGk6JpFAFImhsv0lt31_Q4ANKc0Yk_5t4837VCVro4_W18O3biPmxBnI79nN8HVvX_4zxnLX5f54i1Zb1bvi2ydtIiGklKRKnQwaYomKAqFdoXSQpIKxXbqQaEjA7j1xnFXauVIBgXecY8lSTFjz2ds2zU_o-8Hu2vG7jA9Wi410MTSfFql59VvVfujbbtq77qjRbAneXuStxd5m32slpcm_gDDu01U</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Förstel, Marko</creator><creator>Pollow, Kai Mario</creator><creator>Saroukh, Karim</creator><creator>Najib, Este Ainun</creator><creator>Mitric, Roland</creator><creator>Dopfer, Otto</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3630-9494</orcidid><orcidid>https://orcid.org/0000-0002-9834-4404</orcidid><orcidid>https://orcid.org/0000-0002-4941-0436</orcidid></search><sort><creationdate>20201123</creationdate><title>The Optical Spectrum of Au2</title><author>Förstel, Marko ; Pollow, Kai Mario ; Saroukh, Karim ; Najib, Este Ainun ; Mitric, Roland ; Dopfer, Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1187-c575b6f89918f57fb6ab563475fbd57ff51a7801de8a2ac65a74f50ea2e1c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalytic activity</topic><topic>Cations</topic><topic>Chemistry</topic><topic>Coupling (molecular)</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>electronic structure calculations</topic><topic>gold</topic><topic>Mathematical analysis</topic><topic>Molecular ions</topic><topic>optical spectroscopy</topic><topic>Photodissociation</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Förstel, Marko</creatorcontrib><creatorcontrib>Pollow, Kai Mario</creatorcontrib><creatorcontrib>Saroukh, Karim</creatorcontrib><creatorcontrib>Najib, Este Ainun</creatorcontrib><creatorcontrib>Mitric, Roland</creatorcontrib><creatorcontrib>Dopfer, Otto</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley Online Library Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Förstel, Marko</au><au>Pollow, Kai Mario</au><au>Saroukh, Karim</au><au>Najib, Este Ainun</au><au>Mitric, Roland</au><au>Dopfer, Otto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Optical Spectrum of Au2</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-11-23</date><risdate>2020</risdate><volume>132</volume><issue>48</issue><spage>21587</spage><epage>21592</epage><pages>21587-21592</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>The electronic structure of the Au2+ cation is essential for understanding its catalytic activity. We present the optical spectrum of mass‐selected Au2+ measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290–450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin‐orbit coupling. The experimental spectra are compared to high‐level quantum‐chemical calculations at the CASSCF‐MRCI level including spin‐orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2+‐like diatomic molecular ion strictly requires multireference and relativistic treatment including spin‐orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation.
The optical spectrum of the prototypical diatomic Au2+ cation is presented in high quality. The measured spectrum of this seemingly simple H2+‐like cation cannot be explained by standard TD‐DFT methods but requires relativistic multireference treatment with spin‐orbit coupling.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202011337</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3630-9494</orcidid><orcidid>https://orcid.org/0000-0002-9834-4404</orcidid><orcidid>https://orcid.org/0000-0002-4941-0436</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2020-11, Vol.132 (48), p.21587-21592 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2460756362 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Catalytic activity Cations Chemistry Coupling (molecular) Electron states Electronic structure electronic structure calculations gold Mathematical analysis Molecular ions optical spectroscopy Photodissociation Spectroscopy Spectrum analysis |
title | The Optical Spectrum of Au2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Optical%20Spectrum%20of%20Au2&rft.jtitle=Angewandte%20Chemie&rft.au=F%C3%B6rstel,%20Marko&rft.date=2020-11-23&rft.volume=132&rft.issue=48&rft.spage=21587&rft.epage=21592&rft.pages=21587-21592&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202011337&rft_dat=%3Cproquest_wiley%3E2460756362%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1187-c575b6f89918f57fb6ab563475fbd57ff51a7801de8a2ac65a74f50ea2e1c743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460756362&rft_id=info:pmid/&rfr_iscdi=true |