Loading…

The Optical Spectrum of Au2

The electronic structure of the Au2+ cation is essential for understanding its catalytic activity. We present the optical spectrum of mass‐selected Au2+ measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290–450 nm range (at ca. 440 and ca. 325 n...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2020-11, Vol.132 (48), p.21587-21592
Main Authors: Förstel, Marko, Pollow, Kai Mario, Saroukh, Karim, Najib, Este Ainun, Mitric, Roland, Dopfer, Otto
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 21592
container_issue 48
container_start_page 21587
container_title Angewandte Chemie
container_volume 132
creator Förstel, Marko
Pollow, Kai Mario
Saroukh, Karim
Najib, Este Ainun
Mitric, Roland
Dopfer, Otto
description The electronic structure of the Au2+ cation is essential for understanding its catalytic activity. We present the optical spectrum of mass‐selected Au2+ measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290–450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin‐orbit coupling. The experimental spectra are compared to high‐level quantum‐chemical calculations at the CASSCF‐MRCI level including spin‐orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2+‐like diatomic molecular ion strictly requires multireference and relativistic treatment including spin‐orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation. The optical spectrum of the prototypical diatomic Au2+ cation is presented in high quality. The measured spectrum of this seemingly simple H2+‐like cation cannot be explained by standard TD‐DFT methods but requires relativistic multireference treatment with spin‐orbit coupling.
doi_str_mv 10.1002/ange.202011337
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2460756362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460756362</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1187-c575b6f89918f57fb6ab563475fbd57ff51a7801de8a2ac65a74f50ea2e1c743</originalsourceid><addsrcrecordid>eNo9j0tLw0AUhQdRMFa3btwEXKfeO687WYZSq1DswuyHSTqjKWkT80D6702pdHU4cPgOH2OPCHME4C_u8OXnHDggCkFXLELFMRGk6JpFAFImhsv0lt31_Q4ANKc0Yk_5t4837VCVro4_W18O3biPmxBnI79nN8HVvX_4zxnLX5f54i1Zb1bvi2ydtIiGklKRKnQwaYomKAqFdoXSQpIKxXbqQaEjA7j1xnFXauVIBgXecY8lSTFjz2ds2zU_o-8Hu2vG7jA9Wi410MTSfFql59VvVfujbbtq77qjRbAneXuStxd5m32slpcm_gDDu01U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460756362</pqid></control><display><type>article</type><title>The Optical Spectrum of Au2</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Förstel, Marko ; Pollow, Kai Mario ; Saroukh, Karim ; Najib, Este Ainun ; Mitric, Roland ; Dopfer, Otto</creator><creatorcontrib>Förstel, Marko ; Pollow, Kai Mario ; Saroukh, Karim ; Najib, Este Ainun ; Mitric, Roland ; Dopfer, Otto</creatorcontrib><description>The electronic structure of the Au2+ cation is essential for understanding its catalytic activity. We present the optical spectrum of mass‐selected Au2+ measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290–450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin‐orbit coupling. The experimental spectra are compared to high‐level quantum‐chemical calculations at the CASSCF‐MRCI level including spin‐orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2+‐like diatomic molecular ion strictly requires multireference and relativistic treatment including spin‐orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation. The optical spectrum of the prototypical diatomic Au2+ cation is presented in high quality. The measured spectrum of this seemingly simple H2+‐like cation cannot be explained by standard TD‐DFT methods but requires relativistic multireference treatment with spin‐orbit coupling.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202011337</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalytic activity ; Cations ; Chemistry ; Coupling (molecular) ; Electron states ; Electronic structure ; electronic structure calculations ; gold ; Mathematical analysis ; Molecular ions ; optical spectroscopy ; Photodissociation ; Spectroscopy ; Spectrum analysis</subject><ispartof>Angewandte Chemie, 2020-11, Vol.132 (48), p.21587-21592</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3630-9494 ; 0000-0002-9834-4404 ; 0000-0002-4941-0436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Förstel, Marko</creatorcontrib><creatorcontrib>Pollow, Kai Mario</creatorcontrib><creatorcontrib>Saroukh, Karim</creatorcontrib><creatorcontrib>Najib, Este Ainun</creatorcontrib><creatorcontrib>Mitric, Roland</creatorcontrib><creatorcontrib>Dopfer, Otto</creatorcontrib><title>The Optical Spectrum of Au2</title><title>Angewandte Chemie</title><description>The electronic structure of the Au2+ cation is essential for understanding its catalytic activity. We present the optical spectrum of mass‐selected Au2+ measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290–450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin‐orbit coupling. The experimental spectra are compared to high‐level quantum‐chemical calculations at the CASSCF‐MRCI level including spin‐orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2+‐like diatomic molecular ion strictly requires multireference and relativistic treatment including spin‐orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation. The optical spectrum of the prototypical diatomic Au2+ cation is presented in high quality. The measured spectrum of this seemingly simple H2+‐like cation cannot be explained by standard TD‐DFT methods but requires relativistic multireference treatment with spin‐orbit coupling.</description><subject>Catalytic activity</subject><subject>Cations</subject><subject>Chemistry</subject><subject>Coupling (molecular)</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>electronic structure calculations</subject><subject>gold</subject><subject>Mathematical analysis</subject><subject>Molecular ions</subject><subject>optical spectroscopy</subject><subject>Photodissociation</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9j0tLw0AUhQdRMFa3btwEXKfeO687WYZSq1DswuyHSTqjKWkT80D6702pdHU4cPgOH2OPCHME4C_u8OXnHDggCkFXLELFMRGk6JpFAFImhsv0lt31_Q4ANKc0Yk_5t4837VCVro4_W18O3biPmxBnI79nN8HVvX_4zxnLX5f54i1Zb1bvi2ydtIiGklKRKnQwaYomKAqFdoXSQpIKxXbqQaEjA7j1xnFXauVIBgXecY8lSTFjz2ds2zU_o-8Hu2vG7jA9Wi410MTSfFql59VvVfujbbtq77qjRbAneXuStxd5m32slpcm_gDDu01U</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Förstel, Marko</creator><creator>Pollow, Kai Mario</creator><creator>Saroukh, Karim</creator><creator>Najib, Este Ainun</creator><creator>Mitric, Roland</creator><creator>Dopfer, Otto</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3630-9494</orcidid><orcidid>https://orcid.org/0000-0002-9834-4404</orcidid><orcidid>https://orcid.org/0000-0002-4941-0436</orcidid></search><sort><creationdate>20201123</creationdate><title>The Optical Spectrum of Au2</title><author>Förstel, Marko ; Pollow, Kai Mario ; Saroukh, Karim ; Najib, Este Ainun ; Mitric, Roland ; Dopfer, Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1187-c575b6f89918f57fb6ab563475fbd57ff51a7801de8a2ac65a74f50ea2e1c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalytic activity</topic><topic>Cations</topic><topic>Chemistry</topic><topic>Coupling (molecular)</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>electronic structure calculations</topic><topic>gold</topic><topic>Mathematical analysis</topic><topic>Molecular ions</topic><topic>optical spectroscopy</topic><topic>Photodissociation</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Förstel, Marko</creatorcontrib><creatorcontrib>Pollow, Kai Mario</creatorcontrib><creatorcontrib>Saroukh, Karim</creatorcontrib><creatorcontrib>Najib, Este Ainun</creatorcontrib><creatorcontrib>Mitric, Roland</creatorcontrib><creatorcontrib>Dopfer, Otto</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley Online Library Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Förstel, Marko</au><au>Pollow, Kai Mario</au><au>Saroukh, Karim</au><au>Najib, Este Ainun</au><au>Mitric, Roland</au><au>Dopfer, Otto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Optical Spectrum of Au2</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-11-23</date><risdate>2020</risdate><volume>132</volume><issue>48</issue><spage>21587</spage><epage>21592</epage><pages>21587-21592</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>The electronic structure of the Au2+ cation is essential for understanding its catalytic activity. We present the optical spectrum of mass‐selected Au2+ measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290–450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin‐orbit coupling. The experimental spectra are compared to high‐level quantum‐chemical calculations at the CASSCF‐MRCI level including spin‐orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2+‐like diatomic molecular ion strictly requires multireference and relativistic treatment including spin‐orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation. The optical spectrum of the prototypical diatomic Au2+ cation is presented in high quality. The measured spectrum of this seemingly simple H2+‐like cation cannot be explained by standard TD‐DFT methods but requires relativistic multireference treatment with spin‐orbit coupling.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202011337</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3630-9494</orcidid><orcidid>https://orcid.org/0000-0002-9834-4404</orcidid><orcidid>https://orcid.org/0000-0002-4941-0436</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2020-11, Vol.132 (48), p.21587-21592
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2460756362
source Wiley-Blackwell Read & Publish Collection
subjects Catalytic activity
Cations
Chemistry
Coupling (molecular)
Electron states
Electronic structure
electronic structure calculations
gold
Mathematical analysis
Molecular ions
optical spectroscopy
Photodissociation
Spectroscopy
Spectrum analysis
title The Optical Spectrum of Au2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Optical%20Spectrum%20of%20Au2&rft.jtitle=Angewandte%20Chemie&rft.au=F%C3%B6rstel,%20Marko&rft.date=2020-11-23&rft.volume=132&rft.issue=48&rft.spage=21587&rft.epage=21592&rft.pages=21587-21592&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202011337&rft_dat=%3Cproquest_wiley%3E2460756362%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1187-c575b6f89918f57fb6ab563475fbd57ff51a7801de8a2ac65a74f50ea2e1c743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460756362&rft_id=info:pmid/&rfr_iscdi=true