Loading…
Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces
In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the approp...
Saved in:
Published in: | arXiv.org 2020-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Misiats, Oleksandr Mogylova, Viktoriia Stanzhytskyi, Oleksandr |
description | In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure based on Krylov-Bogoliubov theorem on the tightness of the family of measures. Finally, under certain assumptions on nonlinearities, we establish the uniqueness of invariant measures. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2460883931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460883931</sourcerecordid><originalsourceid>FETCH-proquest_journals_24608839313</originalsourceid><addsrcrecordid>eNqNjNEKgjAYRkcQJOU7_NC1sDY1uy7FLrrSe1ljo4lsun_r-TPoAbr6OIfDtyEJ4_yUVTljO5IijpRSVp5ZUfCE9Hf7Ft4IG-ChBEavQDsPXXDyJTAYCU20MhhnxQQ3o7XyygazQr1E8fUIxkJrpqfyAbpZSIUHstViQpX-dk-OTd1f22z2bokKwzC66NdHHFhe0qriF37i_1UfrBdAxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460883931</pqid></control><display><type>article</type><title>Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces</title><source>Publicly Available Content (ProQuest)</source><creator>Misiats, Oleksandr ; Mogylova, Viktoriia ; Stanzhytskyi, Oleksandr</creator><creatorcontrib>Misiats, Oleksandr ; Mogylova, Viktoriia ; Stanzhytskyi, Oleksandr</creatorcontrib><description>In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure based on Krylov-Bogoliubov theorem on the tightness of the family of measures. Finally, under certain assumptions on nonlinearities, we establish the uniqueness of invariant measures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Existence theorems ; Hilbert space ; Invariants ; Mathematical analysis ; Nonlinear equations ; Tightness ; Uniqueness</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2460883931?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Misiats, Oleksandr</creatorcontrib><creatorcontrib>Mogylova, Viktoriia</creatorcontrib><creatorcontrib>Stanzhytskyi, Oleksandr</creatorcontrib><title>Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces</title><title>arXiv.org</title><description>In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure based on Krylov-Bogoliubov theorem on the tightness of the family of measures. Finally, under certain assumptions on nonlinearities, we establish the uniqueness of invariant measures.</description><subject>Differential equations</subject><subject>Existence theorems</subject><subject>Hilbert space</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Tightness</subject><subject>Uniqueness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjNEKgjAYRkcQJOU7_NC1sDY1uy7FLrrSe1ljo4lsun_r-TPoAbr6OIfDtyEJ4_yUVTljO5IijpRSVp5ZUfCE9Hf7Ft4IG-ChBEavQDsPXXDyJTAYCU20MhhnxQQ3o7XyygazQr1E8fUIxkJrpqfyAbpZSIUHstViQpX-dk-OTd1f22z2bokKwzC66NdHHFhe0qriF37i_1UfrBdAxA</recordid><startdate>20201113</startdate><enddate>20201113</enddate><creator>Misiats, Oleksandr</creator><creator>Mogylova, Viktoriia</creator><creator>Stanzhytskyi, Oleksandr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201113</creationdate><title>Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces</title><author>Misiats, Oleksandr ; Mogylova, Viktoriia ; Stanzhytskyi, Oleksandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24608839313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Differential equations</topic><topic>Existence theorems</topic><topic>Hilbert space</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Tightness</topic><topic>Uniqueness</topic><toplevel>online_resources</toplevel><creatorcontrib>Misiats, Oleksandr</creatorcontrib><creatorcontrib>Mogylova, Viktoriia</creatorcontrib><creatorcontrib>Stanzhytskyi, Oleksandr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misiats, Oleksandr</au><au>Mogylova, Viktoriia</au><au>Stanzhytskyi, Oleksandr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces</atitle><jtitle>arXiv.org</jtitle><date>2020-11-13</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure based on Krylov-Bogoliubov theorem on the tightness of the family of measures. Finally, under certain assumptions on nonlinearities, we establish the uniqueness of invariant measures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2460883931 |
source | Publicly Available Content (ProQuest) |
subjects | Differential equations Existence theorems Hilbert space Invariants Mathematical analysis Nonlinear equations Tightness Uniqueness |
title | Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Invariant%20Measure%20for%20Stochastic%20Functional%20Differential%20Equations%20in%20Hilbert%20Spaces&rft.jtitle=arXiv.org&rft.au=Misiats,%20Oleksandr&rft.date=2020-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2460883931%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24608839313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460883931&rft_id=info:pmid/&rfr_iscdi=true |