Loading…

Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces

In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the approp...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-11
Main Authors: Misiats, Oleksandr, Mogylova, Viktoriia, Stanzhytskyi, Oleksandr
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Misiats, Oleksandr
Mogylova, Viktoriia
Stanzhytskyi, Oleksandr
description In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure based on Krylov-Bogoliubov theorem on the tightness of the family of measures. Finally, under certain assumptions on nonlinearities, we establish the uniqueness of invariant measures.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2460883931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460883931</sourcerecordid><originalsourceid>FETCH-proquest_journals_24608839313</originalsourceid><addsrcrecordid>eNqNjNEKgjAYRkcQJOU7_NC1sDY1uy7FLrrSe1ljo4lsun_r-TPoAbr6OIfDtyEJ4_yUVTljO5IijpRSVp5ZUfCE9Hf7Ft4IG-ChBEavQDsPXXDyJTAYCU20MhhnxQQ3o7XyygazQr1E8fUIxkJrpqfyAbpZSIUHstViQpX-dk-OTd1f22z2bokKwzC66NdHHFhe0qriF37i_1UfrBdAxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460883931</pqid></control><display><type>article</type><title>Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces</title><source>Publicly Available Content (ProQuest)</source><creator>Misiats, Oleksandr ; Mogylova, Viktoriia ; Stanzhytskyi, Oleksandr</creator><creatorcontrib>Misiats, Oleksandr ; Mogylova, Viktoriia ; Stanzhytskyi, Oleksandr</creatorcontrib><description>In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure based on Krylov-Bogoliubov theorem on the tightness of the family of measures. Finally, under certain assumptions on nonlinearities, we establish the uniqueness of invariant measures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Existence theorems ; Hilbert space ; Invariants ; Mathematical analysis ; Nonlinear equations ; Tightness ; Uniqueness</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2460883931?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Misiats, Oleksandr</creatorcontrib><creatorcontrib>Mogylova, Viktoriia</creatorcontrib><creatorcontrib>Stanzhytskyi, Oleksandr</creatorcontrib><title>Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces</title><title>arXiv.org</title><description>In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure based on Krylov-Bogoliubov theorem on the tightness of the family of measures. Finally, under certain assumptions on nonlinearities, we establish the uniqueness of invariant measures.</description><subject>Differential equations</subject><subject>Existence theorems</subject><subject>Hilbert space</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Tightness</subject><subject>Uniqueness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjNEKgjAYRkcQJOU7_NC1sDY1uy7FLrrSe1ljo4lsun_r-TPoAbr6OIfDtyEJ4_yUVTljO5IijpRSVp5ZUfCE9Hf7Ft4IG-ChBEavQDsPXXDyJTAYCU20MhhnxQQ3o7XyygazQr1E8fUIxkJrpqfyAbpZSIUHstViQpX-dk-OTd1f22z2bokKwzC66NdHHFhe0qriF37i_1UfrBdAxA</recordid><startdate>20201113</startdate><enddate>20201113</enddate><creator>Misiats, Oleksandr</creator><creator>Mogylova, Viktoriia</creator><creator>Stanzhytskyi, Oleksandr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201113</creationdate><title>Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces</title><author>Misiats, Oleksandr ; Mogylova, Viktoriia ; Stanzhytskyi, Oleksandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24608839313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Differential equations</topic><topic>Existence theorems</topic><topic>Hilbert space</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Tightness</topic><topic>Uniqueness</topic><toplevel>online_resources</toplevel><creatorcontrib>Misiats, Oleksandr</creatorcontrib><creatorcontrib>Mogylova, Viktoriia</creatorcontrib><creatorcontrib>Stanzhytskyi, Oleksandr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misiats, Oleksandr</au><au>Mogylova, Viktoriia</au><au>Stanzhytskyi, Oleksandr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces</atitle><jtitle>arXiv.org</jtitle><date>2020-11-13</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure based on Krylov-Bogoliubov theorem on the tightness of the family of measures. Finally, under certain assumptions on nonlinearities, we establish the uniqueness of invariant measures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2460883931
source Publicly Available Content (ProQuest)
subjects Differential equations
Existence theorems
Hilbert space
Invariants
Mathematical analysis
Nonlinear equations
Tightness
Uniqueness
title Invariant Measure for Stochastic Functional Differential Equations in Hilbert Spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Invariant%20Measure%20for%20Stochastic%20Functional%20Differential%20Equations%20in%20Hilbert%20Spaces&rft.jtitle=arXiv.org&rft.au=Misiats,%20Oleksandr&rft.date=2020-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2460883931%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24608839313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460883931&rft_id=info:pmid/&rfr_iscdi=true