Loading…

Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers

Surfactants can immobilize fluid–liquid interfaces under shear stress. We investigate the impact of insoluble surfactants on shear flow along a superhydrophobic surface in Cassie state, with gas trapped in grooves oriented perpendicular to the flow direction. Assuming convection-dominated transport...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2021-01, Vol.907, Article A3
Main Authors: Baier, Tobias, Hardt, Steffen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873
cites cdi_FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 907
creator Baier, Tobias
Hardt, Steffen
description Surfactants can immobilize fluid–liquid interfaces under shear stress. We investigate the impact of insoluble surfactants on shear flow along a superhydrophobic surface in Cassie state, with gas trapped in grooves oriented perpendicular to the flow direction. Assuming convection-dominated transport along the gas–liquid interface, analytical results for the surfactant distribution on a groove and the corresponding flow field in its vicinity are derived both for a single groove and for an array of evenly spaced grooves. The results are elaborated for the case where the surface tension depends linearly on the surfactant concentration, which is characteristic for dilute coverage of the gas–liquid interface. For an array of grooves, the relation between the applied shear stress and the effective slip length on the microstructured surface is investigated.
doi_str_mv 10.1017/jfm.2020.814
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460981723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_814</cupid><sourcerecordid>2460981723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873</originalsourceid><addsrcrecordid>eNptkM1KxDAURoMoOI7ufICAW1uTNG3apQz-DAzoQtfhNr2Z6dA2Y5IqPpLP4YtZmQE3ru7mnO_CIeSSs5Qzrm62tk8FEywtuTwiMy6LKlGFzI_JjDEhEs4FOyVnIWwZ4xmr1IxsloPtRhwMUmdpOwTXjXWHNIzegokwxEDdQMMGwVPbuQ_q3tFTOAA4KXQBIbSTEiEihUg78Gukz99fpsNIh7Gv0YdzcmKhC3hxuHPyen_3snhMVk8Py8XtKjGZEjEp81I1rGnyPIOiklJkooYKC8ktBwkoMC-wBpVhVWJeNWXTGFDCWLSiMKXK5uRqv7vz7m3EEPXWjX6YXmohC1aVXIlsoq73lPEuBI9W73zbg__UnOnflnpqqX9b6qnlhKcHHPrat80a_1b_FX4AasZ4IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460981723</pqid></control><display><type>article</type><title>Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers</title><source>Cambridge University Press</source><creator>Baier, Tobias ; Hardt, Steffen</creator><creatorcontrib>Baier, Tobias ; Hardt, Steffen</creatorcontrib><description>Surfactants can immobilize fluid–liquid interfaces under shear stress. We investigate the impact of insoluble surfactants on shear flow along a superhydrophobic surface in Cassie state, with gas trapped in grooves oriented perpendicular to the flow direction. Assuming convection-dominated transport along the gas–liquid interface, analytical results for the surfactant distribution on a groove and the corresponding flow field in its vicinity are derived both for a single groove and for an array of evenly spaced grooves. The results are elaborated for the case where the surface tension depends linearly on the surfactant concentration, which is characteristic for dilute coverage of the gas–liquid interface. For an array of grooves, the relation between the applied shear stress and the effective slip length on the microstructured surface is investigated.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.814</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Arrays ; Boundary conditions ; Convection ; Fluid mechanics ; Grooves ; Hydrophobic surfaces ; Hydrophobicity ; Interfaces ; JFM Papers ; Microstructured surfaces ; Peclet number ; Reynolds number ; Shear flow ; Shear stress ; Surface tension ; Surfactants ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2021-01, Vol.907, Article A3</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873</citedby><cites>FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873</cites><orcidid>0000-0001-7476-1070 ; 0000-0002-2539-3969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020008149/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,72709</link.rule.ids></links><search><creatorcontrib>Baier, Tobias</creatorcontrib><creatorcontrib>Hardt, Steffen</creatorcontrib><title>Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Surfactants can immobilize fluid–liquid interfaces under shear stress. We investigate the impact of insoluble surfactants on shear flow along a superhydrophobic surface in Cassie state, with gas trapped in grooves oriented perpendicular to the flow direction. Assuming convection-dominated transport along the gas–liquid interface, analytical results for the surfactant distribution on a groove and the corresponding flow field in its vicinity are derived both for a single groove and for an array of evenly spaced grooves. The results are elaborated for the case where the surface tension depends linearly on the surfactant concentration, which is characteristic for dilute coverage of the gas–liquid interface. For an array of grooves, the relation between the applied shear stress and the effective slip length on the microstructured surface is investigated.</description><subject>Arrays</subject><subject>Boundary conditions</subject><subject>Convection</subject><subject>Fluid mechanics</subject><subject>Grooves</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Interfaces</subject><subject>JFM Papers</subject><subject>Microstructured surfaces</subject><subject>Peclet number</subject><subject>Reynolds number</subject><subject>Shear flow</subject><subject>Shear stress</subject><subject>Surface tension</subject><subject>Surfactants</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkM1KxDAURoMoOI7ufICAW1uTNG3apQz-DAzoQtfhNr2Z6dA2Y5IqPpLP4YtZmQE3ru7mnO_CIeSSs5Qzrm62tk8FEywtuTwiMy6LKlGFzI_JjDEhEs4FOyVnIWwZ4xmr1IxsloPtRhwMUmdpOwTXjXWHNIzegokwxEDdQMMGwVPbuQ_q3tFTOAA4KXQBIbSTEiEihUg78Gukz99fpsNIh7Gv0YdzcmKhC3hxuHPyen_3snhMVk8Py8XtKjGZEjEp81I1rGnyPIOiklJkooYKC8ktBwkoMC-wBpVhVWJeNWXTGFDCWLSiMKXK5uRqv7vz7m3EEPXWjX6YXmohC1aVXIlsoq73lPEuBI9W73zbg__UnOnflnpqqX9b6qnlhKcHHPrat80a_1b_FX4AasZ4IQ</recordid><startdate>20210125</startdate><enddate>20210125</enddate><creator>Baier, Tobias</creator><creator>Hardt, Steffen</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7476-1070</orcidid><orcidid>https://orcid.org/0000-0002-2539-3969</orcidid></search><sort><creationdate>20210125</creationdate><title>Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers</title><author>Baier, Tobias ; Hardt, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Boundary conditions</topic><topic>Convection</topic><topic>Fluid mechanics</topic><topic>Grooves</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Interfaces</topic><topic>JFM Papers</topic><topic>Microstructured surfaces</topic><topic>Peclet number</topic><topic>Reynolds number</topic><topic>Shear flow</topic><topic>Shear stress</topic><topic>Surface tension</topic><topic>Surfactants</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baier, Tobias</creatorcontrib><creatorcontrib>Hardt, Steffen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baier, Tobias</au><au>Hardt, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-01-25</date><risdate>2021</risdate><volume>907</volume><artnum>A3</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Surfactants can immobilize fluid–liquid interfaces under shear stress. We investigate the impact of insoluble surfactants on shear flow along a superhydrophobic surface in Cassie state, with gas trapped in grooves oriented perpendicular to the flow direction. Assuming convection-dominated transport along the gas–liquid interface, analytical results for the surfactant distribution on a groove and the corresponding flow field in its vicinity are derived both for a single groove and for an array of evenly spaced grooves. The results are elaborated for the case where the surface tension depends linearly on the surfactant concentration, which is characteristic for dilute coverage of the gas–liquid interface. For an array of grooves, the relation between the applied shear stress and the effective slip length on the microstructured surface is investigated.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.814</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7476-1070</orcidid><orcidid>https://orcid.org/0000-0002-2539-3969</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-01, Vol.907, Article A3
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2460981723
source Cambridge University Press
subjects Arrays
Boundary conditions
Convection
Fluid mechanics
Grooves
Hydrophobic surfaces
Hydrophobicity
Interfaces
JFM Papers
Microstructured surfaces
Peclet number
Reynolds number
Shear flow
Shear stress
Surface tension
Surfactants
Velocity
Viscosity
title Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20insoluble%20surfactants%20on%20shear%20flow%20over%20a%20surface%20in%20Cassie%20state%20at%20large%20P%C3%A9clet%20numbers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Baier,%20Tobias&rft.date=2021-01-25&rft.volume=907&rft.artnum=A3&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.814&rft_dat=%3Cproquest_cross%3E2460981723%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460981723&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_814&rfr_iscdi=true