Loading…
Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers
Surfactants can immobilize fluid–liquid interfaces under shear stress. We investigate the impact of insoluble surfactants on shear flow along a superhydrophobic surface in Cassie state, with gas trapped in grooves oriented perpendicular to the flow direction. Assuming convection-dominated transport...
Saved in:
Published in: | Journal of fluid mechanics 2021-01, Vol.907, Article A3 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 907 |
creator | Baier, Tobias Hardt, Steffen |
description | Surfactants can immobilize fluid–liquid interfaces under shear stress. We investigate the impact of insoluble surfactants on shear flow along a superhydrophobic surface in Cassie state, with gas trapped in grooves oriented perpendicular to the flow direction. Assuming convection-dominated transport along the gas–liquid interface, analytical results for the surfactant distribution on a groove and the corresponding flow field in its vicinity are derived both for a single groove and for an array of evenly spaced grooves. The results are elaborated for the case where the surface tension depends linearly on the surfactant concentration, which is characteristic for dilute coverage of the gas–liquid interface. For an array of grooves, the relation between the applied shear stress and the effective slip length on the microstructured surface is investigated. |
doi_str_mv | 10.1017/jfm.2020.814 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460981723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_814</cupid><sourcerecordid>2460981723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873</originalsourceid><addsrcrecordid>eNptkM1KxDAURoMoOI7ufICAW1uTNG3apQz-DAzoQtfhNr2Z6dA2Y5IqPpLP4YtZmQE3ru7mnO_CIeSSs5Qzrm62tk8FEywtuTwiMy6LKlGFzI_JjDEhEs4FOyVnIWwZ4xmr1IxsloPtRhwMUmdpOwTXjXWHNIzegokwxEDdQMMGwVPbuQ_q3tFTOAA4KXQBIbSTEiEihUg78Gukz99fpsNIh7Gv0YdzcmKhC3hxuHPyen_3snhMVk8Py8XtKjGZEjEp81I1rGnyPIOiklJkooYKC8ktBwkoMC-wBpVhVWJeNWXTGFDCWLSiMKXK5uRqv7vz7m3EEPXWjX6YXmohC1aVXIlsoq73lPEuBI9W73zbg__UnOnflnpqqX9b6qnlhKcHHPrat80a_1b_FX4AasZ4IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460981723</pqid></control><display><type>article</type><title>Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers</title><source>Cambridge University Press</source><creator>Baier, Tobias ; Hardt, Steffen</creator><creatorcontrib>Baier, Tobias ; Hardt, Steffen</creatorcontrib><description>Surfactants can immobilize fluid–liquid interfaces under shear stress. We investigate the impact of insoluble surfactants on shear flow along a superhydrophobic surface in Cassie state, with gas trapped in grooves oriented perpendicular to the flow direction. Assuming convection-dominated transport along the gas–liquid interface, analytical results for the surfactant distribution on a groove and the corresponding flow field in its vicinity are derived both for a single groove and for an array of evenly spaced grooves. The results are elaborated for the case where the surface tension depends linearly on the surfactant concentration, which is characteristic for dilute coverage of the gas–liquid interface. For an array of grooves, the relation between the applied shear stress and the effective slip length on the microstructured surface is investigated.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.814</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Arrays ; Boundary conditions ; Convection ; Fluid mechanics ; Grooves ; Hydrophobic surfaces ; Hydrophobicity ; Interfaces ; JFM Papers ; Microstructured surfaces ; Peclet number ; Reynolds number ; Shear flow ; Shear stress ; Surface tension ; Surfactants ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2021-01, Vol.907, Article A3</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873</citedby><cites>FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873</cites><orcidid>0000-0001-7476-1070 ; 0000-0002-2539-3969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020008149/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,72709</link.rule.ids></links><search><creatorcontrib>Baier, Tobias</creatorcontrib><creatorcontrib>Hardt, Steffen</creatorcontrib><title>Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Surfactants can immobilize fluid–liquid interfaces under shear stress. We investigate the impact of insoluble surfactants on shear flow along a superhydrophobic surface in Cassie state, with gas trapped in grooves oriented perpendicular to the flow direction. Assuming convection-dominated transport along the gas–liquid interface, analytical results for the surfactant distribution on a groove and the corresponding flow field in its vicinity are derived both for a single groove and for an array of evenly spaced grooves. The results are elaborated for the case where the surface tension depends linearly on the surfactant concentration, which is characteristic for dilute coverage of the gas–liquid interface. For an array of grooves, the relation between the applied shear stress and the effective slip length on the microstructured surface is investigated.</description><subject>Arrays</subject><subject>Boundary conditions</subject><subject>Convection</subject><subject>Fluid mechanics</subject><subject>Grooves</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Interfaces</subject><subject>JFM Papers</subject><subject>Microstructured surfaces</subject><subject>Peclet number</subject><subject>Reynolds number</subject><subject>Shear flow</subject><subject>Shear stress</subject><subject>Surface tension</subject><subject>Surfactants</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkM1KxDAURoMoOI7ufICAW1uTNG3apQz-DAzoQtfhNr2Z6dA2Y5IqPpLP4YtZmQE3ru7mnO_CIeSSs5Qzrm62tk8FEywtuTwiMy6LKlGFzI_JjDEhEs4FOyVnIWwZ4xmr1IxsloPtRhwMUmdpOwTXjXWHNIzegokwxEDdQMMGwVPbuQ_q3tFTOAA4KXQBIbSTEiEihUg78Gukz99fpsNIh7Gv0YdzcmKhC3hxuHPyen_3snhMVk8Py8XtKjGZEjEp81I1rGnyPIOiklJkooYKC8ktBwkoMC-wBpVhVWJeNWXTGFDCWLSiMKXK5uRqv7vz7m3EEPXWjX6YXmohC1aVXIlsoq73lPEuBI9W73zbg__UnOnflnpqqX9b6qnlhKcHHPrat80a_1b_FX4AasZ4IQ</recordid><startdate>20210125</startdate><enddate>20210125</enddate><creator>Baier, Tobias</creator><creator>Hardt, Steffen</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7476-1070</orcidid><orcidid>https://orcid.org/0000-0002-2539-3969</orcidid></search><sort><creationdate>20210125</creationdate><title>Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers</title><author>Baier, Tobias ; Hardt, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Boundary conditions</topic><topic>Convection</topic><topic>Fluid mechanics</topic><topic>Grooves</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Interfaces</topic><topic>JFM Papers</topic><topic>Microstructured surfaces</topic><topic>Peclet number</topic><topic>Reynolds number</topic><topic>Shear flow</topic><topic>Shear stress</topic><topic>Surface tension</topic><topic>Surfactants</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baier, Tobias</creatorcontrib><creatorcontrib>Hardt, Steffen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baier, Tobias</au><au>Hardt, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-01-25</date><risdate>2021</risdate><volume>907</volume><artnum>A3</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Surfactants can immobilize fluid–liquid interfaces under shear stress. We investigate the impact of insoluble surfactants on shear flow along a superhydrophobic surface in Cassie state, with gas trapped in grooves oriented perpendicular to the flow direction. Assuming convection-dominated transport along the gas–liquid interface, analytical results for the surfactant distribution on a groove and the corresponding flow field in its vicinity are derived both for a single groove and for an array of evenly spaced grooves. The results are elaborated for the case where the surface tension depends linearly on the surfactant concentration, which is characteristic for dilute coverage of the gas–liquid interface. For an array of grooves, the relation between the applied shear stress and the effective slip length on the microstructured surface is investigated.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.814</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7476-1070</orcidid><orcidid>https://orcid.org/0000-0002-2539-3969</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-01, Vol.907, Article A3 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2460981723 |
source | Cambridge University Press |
subjects | Arrays Boundary conditions Convection Fluid mechanics Grooves Hydrophobic surfaces Hydrophobicity Interfaces JFM Papers Microstructured surfaces Peclet number Reynolds number Shear flow Shear stress Surface tension Surfactants Velocity Viscosity |
title | Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20insoluble%20surfactants%20on%20shear%20flow%20over%20a%20surface%20in%20Cassie%20state%20at%20large%20P%C3%A9clet%20numbers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Baier,%20Tobias&rft.date=2021-01-25&rft.volume=907&rft.artnum=A3&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.814&rft_dat=%3Cproquest_cross%3E2460981723%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-8587d0dd553a6944232ba9e641f1a4ae2e56eba73e98e59d8ddca72cfef26c873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460981723&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_814&rfr_iscdi=true |