Loading…

Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity

YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2021-01, Vol.850, p.156562, Article 156562
Main Authors: Turnbull, Robin, Errandonea, Daniel, Cuenca-Gotor, Vanesa Paula, Sans, Juan Ángel, Gomis, Oscar, Gonzalez, Alfonso, Rodríguez-Hernandez, Plácida, Popescu, Catalin, Bettinelli, Marco, Mishra, Karuna K., Manjón, Francisco Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23
cites cdi_FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23
container_end_page
container_issue
container_start_page 156562
container_title Journal of alloys and compounds
container_volume 850
creator Turnbull, Robin
Errandonea, Daniel
Cuenca-Gotor, Vanesa Paula
Sans, Juan Ángel
Gomis, Oscar
Gonzalez, Alfonso
Rodríguez-Hernandez, Plácida
Popescu, Catalin
Bettinelli, Marco
Mishra, Karuna K.
Manjón, Francisco Javier
description YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation of state (EoS). The isothermal compressibility tensor reveals that the compressibility of YBO3 is highly anisotropic, with the principal compression axis lying perpendicular to the ab-plane being approximately twice as stiff as the two axes perpendicular to it. From the vibrational data obtained from Raman scattering measurements and ab initio calculations, the experimental and calculated pressure response of the YBO3 Raman modes is also determined with the corresponding Grüneisen parameters and the symmetry of the experimental modes has been tentatively assigned and discussed. No evidence for a pressure-induced phase transition in YBO3 is observed up to 27 GPa, however we note that an apparent discontinuity in the compressibility at 8 GPa, likely due to the onset of non-hydrostaticity, could lead to the misinterpretation of an atypically high bulk modulus. •Resolving uncertainty surrounding the fundamental property of the YBO3 bulk modulus.•YBO3 bulk modulus conforms with the compressibility systematics of isomorphic borates.•YBO3 isothermal compressibility tensor reveals highly anisotropic compressibility.•YBO3 anisotropic compressibility explained via constituent BO4 and YO8-polyhedra.•Pressure response of lattice dynamics in pseudo-vaterite borates.
doi_str_mv 10.1016/j.jallcom.2020.156562
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461032983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820329261</els_id><sourcerecordid>2461032983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoThILnrvlo0uYkuqwfsLAXBT2FNJmyLd12TVKx_96U6tnTMDPvvZn3ELomeEUwEbfNqtFta_rDimIaZ1xwQU_QghQ5SzMh5ClaYEl5WrCiOEcX3jcYYyIZWaD3zfcRXH2ALug20Z1Nwh56B6E2sfdhsGPSV4mFzkPy8bBjf5ik7qp2gM7AtO_6Lt2P1vU-6Eitw3iJzirderj6rUv09rh5XT-n293Ty_p-mxpWZCElVGpbMc15mWcVLbEkOfAcM51RYJxXQhRca2lKC1DqUjJsZQk5F4aXGihboptZ9-j6zwF8UE0_uC6eVDQTBDMqCxZRfEaZ-KJ3UKljNK3dqAhWU4iqUb8hqilENYcYeXczD6KFrxqc8qaeTNvagQnK9vU_Cj-lYX43</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461032983</pqid></control><display><type>article</type><title>Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity</title><source>Elsevier</source><creator>Turnbull, Robin ; Errandonea, Daniel ; Cuenca-Gotor, Vanesa Paula ; Sans, Juan Ángel ; Gomis, Oscar ; Gonzalez, Alfonso ; Rodríguez-Hernandez, Plácida ; Popescu, Catalin ; Bettinelli, Marco ; Mishra, Karuna K. ; Manjón, Francisco Javier</creator><creatorcontrib>Turnbull, Robin ; Errandonea, Daniel ; Cuenca-Gotor, Vanesa Paula ; Sans, Juan Ángel ; Gomis, Oscar ; Gonzalez, Alfonso ; Rodríguez-Hernandez, Plácida ; Popescu, Catalin ; Bettinelli, Marco ; Mishra, Karuna K. ; Manjón, Francisco Javier</creatorcontrib><description>YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation of state (EoS). The isothermal compressibility tensor reveals that the compressibility of YBO3 is highly anisotropic, with the principal compression axis lying perpendicular to the ab-plane being approximately twice as stiff as the two axes perpendicular to it. From the vibrational data obtained from Raman scattering measurements and ab initio calculations, the experimental and calculated pressure response of the YBO3 Raman modes is also determined with the corresponding Grüneisen parameters and the symmetry of the experimental modes has been tentatively assigned and discussed. No evidence for a pressure-induced phase transition in YBO3 is observed up to 27 GPa, however we note that an apparent discontinuity in the compressibility at 8 GPa, likely due to the onset of non-hydrostaticity, could lead to the misinterpretation of an atypically high bulk modulus. •Resolving uncertainty surrounding the fundamental property of the YBO3 bulk modulus.•YBO3 bulk modulus conforms with the compressibility systematics of isomorphic borates.•YBO3 isothermal compressibility tensor reveals highly anisotropic compressibility.•YBO3 anisotropic compressibility explained via constituent BO4 and YO8-polyhedra.•Pressure response of lattice dynamics in pseudo-vaterite borates.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.156562</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anisotropy ; Bulk modulus ; Compressibility ; Equations of state ; Gruneisen parameter ; High-pressure ; Inelastic light scattering ; Mathematical analysis ; Phase transitions ; Phosphors ; Quantum efficiency ; Raman spectra ; Synchrotron radiation ; Synchrotrons ; Tensors ; X-ray diffraction</subject><ispartof>Journal of alloys and compounds, 2021-01, Vol.850, p.156562, Article 156562</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 5, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23</citedby><cites>FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Turnbull, Robin</creatorcontrib><creatorcontrib>Errandonea, Daniel</creatorcontrib><creatorcontrib>Cuenca-Gotor, Vanesa Paula</creatorcontrib><creatorcontrib>Sans, Juan Ángel</creatorcontrib><creatorcontrib>Gomis, Oscar</creatorcontrib><creatorcontrib>Gonzalez, Alfonso</creatorcontrib><creatorcontrib>Rodríguez-Hernandez, Plácida</creatorcontrib><creatorcontrib>Popescu, Catalin</creatorcontrib><creatorcontrib>Bettinelli, Marco</creatorcontrib><creatorcontrib>Mishra, Karuna K.</creatorcontrib><creatorcontrib>Manjón, Francisco Javier</creatorcontrib><title>Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity</title><title>Journal of alloys and compounds</title><description>YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation of state (EoS). The isothermal compressibility tensor reveals that the compressibility of YBO3 is highly anisotropic, with the principal compression axis lying perpendicular to the ab-plane being approximately twice as stiff as the two axes perpendicular to it. From the vibrational data obtained from Raman scattering measurements and ab initio calculations, the experimental and calculated pressure response of the YBO3 Raman modes is also determined with the corresponding Grüneisen parameters and the symmetry of the experimental modes has been tentatively assigned and discussed. No evidence for a pressure-induced phase transition in YBO3 is observed up to 27 GPa, however we note that an apparent discontinuity in the compressibility at 8 GPa, likely due to the onset of non-hydrostaticity, could lead to the misinterpretation of an atypically high bulk modulus. •Resolving uncertainty surrounding the fundamental property of the YBO3 bulk modulus.•YBO3 bulk modulus conforms with the compressibility systematics of isomorphic borates.•YBO3 isothermal compressibility tensor reveals highly anisotropic compressibility.•YBO3 anisotropic compressibility explained via constituent BO4 and YO8-polyhedra.•Pressure response of lattice dynamics in pseudo-vaterite borates.</description><subject>Anisotropy</subject><subject>Bulk modulus</subject><subject>Compressibility</subject><subject>Equations of state</subject><subject>Gruneisen parameter</subject><subject>High-pressure</subject><subject>Inelastic light scattering</subject><subject>Mathematical analysis</subject><subject>Phase transitions</subject><subject>Phosphors</subject><subject>Quantum efficiency</subject><subject>Raman spectra</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Tensors</subject><subject>X-ray diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvoThILnrvlo0uYkuqwfsLAXBT2FNJmyLd12TVKx_96U6tnTMDPvvZn3ELomeEUwEbfNqtFta_rDimIaZ1xwQU_QghQ5SzMh5ClaYEl5WrCiOEcX3jcYYyIZWaD3zfcRXH2ALug20Z1Nwh56B6E2sfdhsGPSV4mFzkPy8bBjf5ik7qp2gM7AtO_6Lt2P1vU-6Eitw3iJzirderj6rUv09rh5XT-n293Ty_p-mxpWZCElVGpbMc15mWcVLbEkOfAcM51RYJxXQhRca2lKC1DqUjJsZQk5F4aXGihboptZ9-j6zwF8UE0_uC6eVDQTBDMqCxZRfEaZ-KJ3UKljNK3dqAhWU4iqUb8hqilENYcYeXczD6KFrxqc8qaeTNvagQnK9vU_Cj-lYX43</recordid><startdate>20210105</startdate><enddate>20210105</enddate><creator>Turnbull, Robin</creator><creator>Errandonea, Daniel</creator><creator>Cuenca-Gotor, Vanesa Paula</creator><creator>Sans, Juan Ángel</creator><creator>Gomis, Oscar</creator><creator>Gonzalez, Alfonso</creator><creator>Rodríguez-Hernandez, Plácida</creator><creator>Popescu, Catalin</creator><creator>Bettinelli, Marco</creator><creator>Mishra, Karuna K.</creator><creator>Manjón, Francisco Javier</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210105</creationdate><title>Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity</title><author>Turnbull, Robin ; Errandonea, Daniel ; Cuenca-Gotor, Vanesa Paula ; Sans, Juan Ángel ; Gomis, Oscar ; Gonzalez, Alfonso ; Rodríguez-Hernandez, Plácida ; Popescu, Catalin ; Bettinelli, Marco ; Mishra, Karuna K. ; Manjón, Francisco Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Bulk modulus</topic><topic>Compressibility</topic><topic>Equations of state</topic><topic>Gruneisen parameter</topic><topic>High-pressure</topic><topic>Inelastic light scattering</topic><topic>Mathematical analysis</topic><topic>Phase transitions</topic><topic>Phosphors</topic><topic>Quantum efficiency</topic><topic>Raman spectra</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Tensors</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turnbull, Robin</creatorcontrib><creatorcontrib>Errandonea, Daniel</creatorcontrib><creatorcontrib>Cuenca-Gotor, Vanesa Paula</creatorcontrib><creatorcontrib>Sans, Juan Ángel</creatorcontrib><creatorcontrib>Gomis, Oscar</creatorcontrib><creatorcontrib>Gonzalez, Alfonso</creatorcontrib><creatorcontrib>Rodríguez-Hernandez, Plácida</creatorcontrib><creatorcontrib>Popescu, Catalin</creatorcontrib><creatorcontrib>Bettinelli, Marco</creatorcontrib><creatorcontrib>Mishra, Karuna K.</creatorcontrib><creatorcontrib>Manjón, Francisco Javier</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turnbull, Robin</au><au>Errandonea, Daniel</au><au>Cuenca-Gotor, Vanesa Paula</au><au>Sans, Juan Ángel</au><au>Gomis, Oscar</au><au>Gonzalez, Alfonso</au><au>Rodríguez-Hernandez, Plácida</au><au>Popescu, Catalin</au><au>Bettinelli, Marco</au><au>Mishra, Karuna K.</au><au>Manjón, Francisco Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-01-05</date><risdate>2021</risdate><volume>850</volume><spage>156562</spage><pages>156562-</pages><artnum>156562</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation of state (EoS). The isothermal compressibility tensor reveals that the compressibility of YBO3 is highly anisotropic, with the principal compression axis lying perpendicular to the ab-plane being approximately twice as stiff as the two axes perpendicular to it. From the vibrational data obtained from Raman scattering measurements and ab initio calculations, the experimental and calculated pressure response of the YBO3 Raman modes is also determined with the corresponding Grüneisen parameters and the symmetry of the experimental modes has been tentatively assigned and discussed. No evidence for a pressure-induced phase transition in YBO3 is observed up to 27 GPa, however we note that an apparent discontinuity in the compressibility at 8 GPa, likely due to the onset of non-hydrostaticity, could lead to the misinterpretation of an atypically high bulk modulus. •Resolving uncertainty surrounding the fundamental property of the YBO3 bulk modulus.•YBO3 bulk modulus conforms with the compressibility systematics of isomorphic borates.•YBO3 isothermal compressibility tensor reveals highly anisotropic compressibility.•YBO3 anisotropic compressibility explained via constituent BO4 and YO8-polyhedra.•Pressure response of lattice dynamics in pseudo-vaterite borates.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.156562</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-01, Vol.850, p.156562, Article 156562
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2461032983
source Elsevier
subjects Anisotropy
Bulk modulus
Compressibility
Equations of state
Gruneisen parameter
High-pressure
Inelastic light scattering
Mathematical analysis
Phase transitions
Phosphors
Quantum efficiency
Raman spectra
Synchrotron radiation
Synchrotrons
Tensors
X-ray diffraction
title Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20theoretical%20study%20of%20dense%20YBO3%20and%20the%20influence%20of%20non-hydrostaticity&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Turnbull,%20Robin&rft.date=2021-01-05&rft.volume=850&rft.spage=156562&rft.pages=156562-&rft.artnum=156562&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.156562&rft_dat=%3Cproquest_cross%3E2461032983%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2461032983&rft_id=info:pmid/&rfr_iscdi=true