Loading…
Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity
YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehe...
Saved in:
Published in: | Journal of alloys and compounds 2021-01, Vol.850, p.156562, Article 156562 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23 |
container_end_page | |
container_issue | |
container_start_page | 156562 |
container_title | Journal of alloys and compounds |
container_volume | 850 |
creator | Turnbull, Robin Errandonea, Daniel Cuenca-Gotor, Vanesa Paula Sans, Juan Ángel Gomis, Oscar Gonzalez, Alfonso Rodríguez-Hernandez, Plácida Popescu, Catalin Bettinelli, Marco Mishra, Karuna K. Manjón, Francisco Javier |
description | YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation of state (EoS). The isothermal compressibility tensor reveals that the compressibility of YBO3 is highly anisotropic, with the principal compression axis lying perpendicular to the ab-plane being approximately twice as stiff as the two axes perpendicular to it. From the vibrational data obtained from Raman scattering measurements and ab initio calculations, the experimental and calculated pressure response of the YBO3 Raman modes is also determined with the corresponding Grüneisen parameters and the symmetry of the experimental modes has been tentatively assigned and discussed. No evidence for a pressure-induced phase transition in YBO3 is observed up to 27 GPa, however we note that an apparent discontinuity in the compressibility at 8 GPa, likely due to the onset of non-hydrostaticity, could lead to the misinterpretation of an atypically high bulk modulus.
•Resolving uncertainty surrounding the fundamental property of the YBO3 bulk modulus.•YBO3 bulk modulus conforms with the compressibility systematics of isomorphic borates.•YBO3 isothermal compressibility tensor reveals highly anisotropic compressibility.•YBO3 anisotropic compressibility explained via constituent BO4 and YO8-polyhedra.•Pressure response of lattice dynamics in pseudo-vaterite borates. |
doi_str_mv | 10.1016/j.jallcom.2020.156562 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461032983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820329261</els_id><sourcerecordid>2461032983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoThILnrvlo0uYkuqwfsLAXBT2FNJmyLd12TVKx_96U6tnTMDPvvZn3ELomeEUwEbfNqtFta_rDimIaZ1xwQU_QghQ5SzMh5ClaYEl5WrCiOEcX3jcYYyIZWaD3zfcRXH2ALug20Z1Nwh56B6E2sfdhsGPSV4mFzkPy8bBjf5ik7qp2gM7AtO_6Lt2P1vU-6Eitw3iJzirderj6rUv09rh5XT-n293Ty_p-mxpWZCElVGpbMc15mWcVLbEkOfAcM51RYJxXQhRca2lKC1DqUjJsZQk5F4aXGihboptZ9-j6zwF8UE0_uC6eVDQTBDMqCxZRfEaZ-KJ3UKljNK3dqAhWU4iqUb8hqilENYcYeXczD6KFrxqc8qaeTNvagQnK9vU_Cj-lYX43</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461032983</pqid></control><display><type>article</type><title>Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity</title><source>Elsevier</source><creator>Turnbull, Robin ; Errandonea, Daniel ; Cuenca-Gotor, Vanesa Paula ; Sans, Juan Ángel ; Gomis, Oscar ; Gonzalez, Alfonso ; Rodríguez-Hernandez, Plácida ; Popescu, Catalin ; Bettinelli, Marco ; Mishra, Karuna K. ; Manjón, Francisco Javier</creator><creatorcontrib>Turnbull, Robin ; Errandonea, Daniel ; Cuenca-Gotor, Vanesa Paula ; Sans, Juan Ángel ; Gomis, Oscar ; Gonzalez, Alfonso ; Rodríguez-Hernandez, Plácida ; Popescu, Catalin ; Bettinelli, Marco ; Mishra, Karuna K. ; Manjón, Francisco Javier</creatorcontrib><description>YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation of state (EoS). The isothermal compressibility tensor reveals that the compressibility of YBO3 is highly anisotropic, with the principal compression axis lying perpendicular to the ab-plane being approximately twice as stiff as the two axes perpendicular to it. From the vibrational data obtained from Raman scattering measurements and ab initio calculations, the experimental and calculated pressure response of the YBO3 Raman modes is also determined with the corresponding Grüneisen parameters and the symmetry of the experimental modes has been tentatively assigned and discussed. No evidence for a pressure-induced phase transition in YBO3 is observed up to 27 GPa, however we note that an apparent discontinuity in the compressibility at 8 GPa, likely due to the onset of non-hydrostaticity, could lead to the misinterpretation of an atypically high bulk modulus.
•Resolving uncertainty surrounding the fundamental property of the YBO3 bulk modulus.•YBO3 bulk modulus conforms with the compressibility systematics of isomorphic borates.•YBO3 isothermal compressibility tensor reveals highly anisotropic compressibility.•YBO3 anisotropic compressibility explained via constituent BO4 and YO8-polyhedra.•Pressure response of lattice dynamics in pseudo-vaterite borates.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.156562</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anisotropy ; Bulk modulus ; Compressibility ; Equations of state ; Gruneisen parameter ; High-pressure ; Inelastic light scattering ; Mathematical analysis ; Phase transitions ; Phosphors ; Quantum efficiency ; Raman spectra ; Synchrotron radiation ; Synchrotrons ; Tensors ; X-ray diffraction</subject><ispartof>Journal of alloys and compounds, 2021-01, Vol.850, p.156562, Article 156562</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 5, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23</citedby><cites>FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Turnbull, Robin</creatorcontrib><creatorcontrib>Errandonea, Daniel</creatorcontrib><creatorcontrib>Cuenca-Gotor, Vanesa Paula</creatorcontrib><creatorcontrib>Sans, Juan Ángel</creatorcontrib><creatorcontrib>Gomis, Oscar</creatorcontrib><creatorcontrib>Gonzalez, Alfonso</creatorcontrib><creatorcontrib>Rodríguez-Hernandez, Plácida</creatorcontrib><creatorcontrib>Popescu, Catalin</creatorcontrib><creatorcontrib>Bettinelli, Marco</creatorcontrib><creatorcontrib>Mishra, Karuna K.</creatorcontrib><creatorcontrib>Manjón, Francisco Javier</creatorcontrib><title>Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity</title><title>Journal of alloys and compounds</title><description>YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation of state (EoS). The isothermal compressibility tensor reveals that the compressibility of YBO3 is highly anisotropic, with the principal compression axis lying perpendicular to the ab-plane being approximately twice as stiff as the two axes perpendicular to it. From the vibrational data obtained from Raman scattering measurements and ab initio calculations, the experimental and calculated pressure response of the YBO3 Raman modes is also determined with the corresponding Grüneisen parameters and the symmetry of the experimental modes has been tentatively assigned and discussed. No evidence for a pressure-induced phase transition in YBO3 is observed up to 27 GPa, however we note that an apparent discontinuity in the compressibility at 8 GPa, likely due to the onset of non-hydrostaticity, could lead to the misinterpretation of an atypically high bulk modulus.
•Resolving uncertainty surrounding the fundamental property of the YBO3 bulk modulus.•YBO3 bulk modulus conforms with the compressibility systematics of isomorphic borates.•YBO3 isothermal compressibility tensor reveals highly anisotropic compressibility.•YBO3 anisotropic compressibility explained via constituent BO4 and YO8-polyhedra.•Pressure response of lattice dynamics in pseudo-vaterite borates.</description><subject>Anisotropy</subject><subject>Bulk modulus</subject><subject>Compressibility</subject><subject>Equations of state</subject><subject>Gruneisen parameter</subject><subject>High-pressure</subject><subject>Inelastic light scattering</subject><subject>Mathematical analysis</subject><subject>Phase transitions</subject><subject>Phosphors</subject><subject>Quantum efficiency</subject><subject>Raman spectra</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Tensors</subject><subject>X-ray diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvoThILnrvlo0uYkuqwfsLAXBT2FNJmyLd12TVKx_96U6tnTMDPvvZn3ELomeEUwEbfNqtFta_rDimIaZ1xwQU_QghQ5SzMh5ClaYEl5WrCiOEcX3jcYYyIZWaD3zfcRXH2ALug20Z1Nwh56B6E2sfdhsGPSV4mFzkPy8bBjf5ik7qp2gM7AtO_6Lt2P1vU-6Eitw3iJzirderj6rUv09rh5XT-n293Ty_p-mxpWZCElVGpbMc15mWcVLbEkOfAcM51RYJxXQhRca2lKC1DqUjJsZQk5F4aXGihboptZ9-j6zwF8UE0_uC6eVDQTBDMqCxZRfEaZ-KJ3UKljNK3dqAhWU4iqUb8hqilENYcYeXczD6KFrxqc8qaeTNvagQnK9vU_Cj-lYX43</recordid><startdate>20210105</startdate><enddate>20210105</enddate><creator>Turnbull, Robin</creator><creator>Errandonea, Daniel</creator><creator>Cuenca-Gotor, Vanesa Paula</creator><creator>Sans, Juan Ángel</creator><creator>Gomis, Oscar</creator><creator>Gonzalez, Alfonso</creator><creator>Rodríguez-Hernandez, Plácida</creator><creator>Popescu, Catalin</creator><creator>Bettinelli, Marco</creator><creator>Mishra, Karuna K.</creator><creator>Manjón, Francisco Javier</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210105</creationdate><title>Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity</title><author>Turnbull, Robin ; Errandonea, Daniel ; Cuenca-Gotor, Vanesa Paula ; Sans, Juan Ángel ; Gomis, Oscar ; Gonzalez, Alfonso ; Rodríguez-Hernandez, Plácida ; Popescu, Catalin ; Bettinelli, Marco ; Mishra, Karuna K. ; Manjón, Francisco Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Bulk modulus</topic><topic>Compressibility</topic><topic>Equations of state</topic><topic>Gruneisen parameter</topic><topic>High-pressure</topic><topic>Inelastic light scattering</topic><topic>Mathematical analysis</topic><topic>Phase transitions</topic><topic>Phosphors</topic><topic>Quantum efficiency</topic><topic>Raman spectra</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Tensors</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turnbull, Robin</creatorcontrib><creatorcontrib>Errandonea, Daniel</creatorcontrib><creatorcontrib>Cuenca-Gotor, Vanesa Paula</creatorcontrib><creatorcontrib>Sans, Juan Ángel</creatorcontrib><creatorcontrib>Gomis, Oscar</creatorcontrib><creatorcontrib>Gonzalez, Alfonso</creatorcontrib><creatorcontrib>Rodríguez-Hernandez, Plácida</creatorcontrib><creatorcontrib>Popescu, Catalin</creatorcontrib><creatorcontrib>Bettinelli, Marco</creatorcontrib><creatorcontrib>Mishra, Karuna K.</creatorcontrib><creatorcontrib>Manjón, Francisco Javier</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turnbull, Robin</au><au>Errandonea, Daniel</au><au>Cuenca-Gotor, Vanesa Paula</au><au>Sans, Juan Ángel</au><au>Gomis, Oscar</au><au>Gonzalez, Alfonso</au><au>Rodríguez-Hernandez, Plácida</au><au>Popescu, Catalin</au><au>Bettinelli, Marco</au><au>Mishra, Karuna K.</au><au>Manjón, Francisco Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-01-05</date><risdate>2021</risdate><volume>850</volume><spage>156562</spage><pages>156562-</pages><artnum>156562</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation of state (EoS). The isothermal compressibility tensor reveals that the compressibility of YBO3 is highly anisotropic, with the principal compression axis lying perpendicular to the ab-plane being approximately twice as stiff as the two axes perpendicular to it. From the vibrational data obtained from Raman scattering measurements and ab initio calculations, the experimental and calculated pressure response of the YBO3 Raman modes is also determined with the corresponding Grüneisen parameters and the symmetry of the experimental modes has been tentatively assigned and discussed. No evidence for a pressure-induced phase transition in YBO3 is observed up to 27 GPa, however we note that an apparent discontinuity in the compressibility at 8 GPa, likely due to the onset of non-hydrostaticity, could lead to the misinterpretation of an atypically high bulk modulus.
•Resolving uncertainty surrounding the fundamental property of the YBO3 bulk modulus.•YBO3 bulk modulus conforms with the compressibility systematics of isomorphic borates.•YBO3 isothermal compressibility tensor reveals highly anisotropic compressibility.•YBO3 anisotropic compressibility explained via constituent BO4 and YO8-polyhedra.•Pressure response of lattice dynamics in pseudo-vaterite borates.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.156562</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2021-01, Vol.850, p.156562, Article 156562 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2461032983 |
source | Elsevier |
subjects | Anisotropy Bulk modulus Compressibility Equations of state Gruneisen parameter High-pressure Inelastic light scattering Mathematical analysis Phase transitions Phosphors Quantum efficiency Raman spectra Synchrotron radiation Synchrotrons Tensors X-ray diffraction |
title | Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20theoretical%20study%20of%20dense%20YBO3%20and%20the%20influence%20of%20non-hydrostaticity&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Turnbull,%20Robin&rft.date=2021-01-05&rft.volume=850&rft.spage=156562&rft.pages=156562-&rft.artnum=156562&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.156562&rft_dat=%3Cproquest_cross%3E2461032983%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-129adf3a55b74f2b0917e5703a42e355f6685aa9cbdeebab930d9be756c5bae23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2461032983&rft_id=info:pmid/&rfr_iscdi=true |