Loading…

Enhanced electrochemical glucose oxidation in alkaline solution over indium decorated carbon supported palladium nanoparticles

At present, carbon nanotube (CNT) supported In modified Pd catalysts are prepared at varying Pd:In ratios via NaBH4 reduction method to investigate the synergetic effect of Pd and In monometallic catalysts through glucose electrooxidation. These catalysts are characterized by advanced surface analyt...

Full description

Saved in:
Bibliographic Details
Published in:Materials chemistry and physics 2020-11, Vol.254, p.123318, Article 123318
Main Authors: Er, Omer Faruk, Caglar, Aykut, Kivrak, Hilal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:At present, carbon nanotube (CNT) supported In modified Pd catalysts are prepared at varying Pd:In ratios via NaBH4 reduction method to investigate the synergetic effect of Pd and In monometallic catalysts through glucose electrooxidation. These catalysts are characterized by advanced surface analytical techniques, namely, inductively coupled plasma-mass spectrometry (ICP-MS) with Agilent 7800 ICP-MS, N2 adsorption-desorption measurements (BET) with Micromeritics 3Flex equipment Tristar II 3020 equipped, PANalytical Empyrean device-ray diffractometer (XRD), Hitachi HighTech HT7700 high resolution-transmission electron microscope (HR-TEM), and scanning electron microscope (SEM). Electrochemical measurements are performed by using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) by CHI660E potentiostat in a three electrode system. The characterization results show that all catalysts are successfully synthesized at desired molar composition. For PdIn (90:10)/CNT catalyst, the crystal size obtained from HR-TEM is 2.36 nm and BET surface area is 212.28 cm2g-1.5% PdIn(90:10)/CNT catalyst exhibits the best catalytic activity, lowest charge transfer resistance (Rct), and a long term stability compared to Pd, In, other Pd:In bimetallic catalysts. EIS and CA results are in a good agreement with CV results. [Display omitted] •Pd–In/CNT catalysts are successfully synthesized via NaBH4 reduction method.•Pd–In(90:10)/CNT catalyst have enhanced glucose electrooxidation activity.•In promotion to Pd enhances the glucose electrooxidation activity.
ISSN:0254-0584
1879-3312
DOI:10.1016/j.matchemphys.2020.123318