Loading…

HVOF Sprayed Fe-Based Wear-Resistant Coatings with Carbide Reinforcement, Synthesized In Situ and by Mechanically Activated Synthesis

The aims of this study were: (1) to produce composite coatings by high velocity oxy fuel (HVOF) spraying with steel matrix reinforced by cermets (a) Cr3C2–20%Ni and (b) TiC–20%NiMo, manufactured by mechanically activated synthesis (MAS); (2) to synthesize in situ a carbide reinforcement for iron mat...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2020-11, Vol.10 (11), p.1092
Main Authors: Tkachivskyi, Dmytro, Juhani, Kristjan, Surženkov, Andrei, Kulu, Priit, Tesař, Tomáš, Mušálek, Radek, Lukáč, František, Antoš, Jakub, Vostřák, Marek, Antonov, Maksim, Goljandin, Dmitri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aims of this study were: (1) to produce composite coatings by high velocity oxy fuel (HVOF) spraying with steel matrix reinforced by cermets (a) Cr3C2–20%Ni and (b) TiC–20%NiMo, manufactured by mechanically activated synthesis (MAS); (2) to synthesize in situ a carbide reinforcement for iron matrix from a mixture of titanium and carbon during HVOF reactive thermal spraying (RTS); (3) to compare the wear resistance of produced coatings. As a reference, HVOF sprayed coatings from commercial Cr3C2–25%NiCr (Amperit 588.074) and AISI 316L were utilized. Study of microstructure revealed the inhomogeneity of the Cr-based MAS coating; the Ti-based MAS coating had typical carbide granular structure, and the Ti-based RTS coating possessed elongated structures of TiC. The X-ray diffraction revealed two main phases in the Cr-based MAS coating: Cr3C2 and austenite, and two phases in the Ti-based coatings: TiC and austenite. Among the studied coatings, the Cr-based MAS coating demonstrated the highest low-force hardness (490 HV0.3). During the abrasive rubber wheel test (ASTM G65), the Ti-based MAS coating showed the best wear resistance, followed by Cr3C2–25%NiCr and Ti-based RTS coating. In the abrasive–erosive test (GOST 23.201-78), the Ti-based MAS coating was 44% better than Cr3C2–25%NiCr coating. The Ti-based RTS coating was 11% more wear resistant than the reference Cr3C2–25%NiCr coating.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings10111092