Loading…
Data-driven Accelerogram Synthesis using Deep Generative Models
Robust estimation of ground motions generated by scenario earthquakes is critical for many engineering applications. We leverage recent advances in Generative Adversarial Networks (GANs) to develop a new framework for synthesizing earthquake acceleration time histories. Our approach extends the Wass...
Saved in:
Published in: | arXiv.org 2020-11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Florez, Manuel A Caporale, Michaelangelo Buabthong, Pakpoom Ross, Zachary E Asimaki, Domniki Meier, Men-Andrin |
description | Robust estimation of ground motions generated by scenario earthquakes is critical for many engineering applications. We leverage recent advances in Generative Adversarial Networks (GANs) to develop a new framework for synthesizing earthquake acceleration time histories. Our approach extends the Wasserstein GAN formulation to allow for the generation of ground-motions conditioned on a set of continuous physical variables. Our model is trained to approximate the intrinsic probability distribution of a massive set of strong-motion recordings from Japan. We show that the trained generator model can synthesize realistic 3-Component accelerograms conditioned on magnitude, distance, and \(V_{s30}\). Our model captures the expected statistical features of the acceleration spectra and waveform envelopes. The output seismograms display clear P and S-wave arrivals with the appropriate energy content and relative onset timing. The synthesized Peak Ground Acceleration (PGA) estimates are also consistent with observations. We develop a set of metrics that allow us to assess the training process's stability and tune model hyperparameters. We further show that the trained generator network can interpolate to conditions where no earthquake ground motion recordings exist. Our approach allows the on-demand synthesis of accelerograms for engineering purposes. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2462303427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462303427</sourcerecordid><originalsourceid>FETCH-proquest_journals_24623034273</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScC_GkFzcR62Vx0r2E9rSmxKTmpIJvbwcfwOkf_m_GIpByk2xTgAWLiXohBOQFZJmM2K5UQSWN12-0fF_XaNC7zqsnv31seCBp4iNp2_ESceBntOhVmDS_ugYNrdi8VYYw_nXJ1qfj_XBJBu9eI1Koejd6O60K0hykkCkU8j_1BfKfOJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462303427</pqid></control><display><type>article</type><title>Data-driven Accelerogram Synthesis using Deep Generative Models</title><source>Publicly Available Content (ProQuest)</source><creator>Florez, Manuel A ; Caporale, Michaelangelo ; Buabthong, Pakpoom ; Ross, Zachary E ; Asimaki, Domniki ; Meier, Men-Andrin</creator><creatorcontrib>Florez, Manuel A ; Caporale, Michaelangelo ; Buabthong, Pakpoom ; Ross, Zachary E ; Asimaki, Domniki ; Meier, Men-Andrin</creatorcontrib><description>Robust estimation of ground motions generated by scenario earthquakes is critical for many engineering applications. We leverage recent advances in Generative Adversarial Networks (GANs) to develop a new framework for synthesizing earthquake acceleration time histories. Our approach extends the Wasserstein GAN formulation to allow for the generation of ground-motions conditioned on a set of continuous physical variables. Our model is trained to approximate the intrinsic probability distribution of a massive set of strong-motion recordings from Japan. We show that the trained generator model can synthesize realistic 3-Component accelerograms conditioned on magnitude, distance, and \(V_{s30}\). Our model captures the expected statistical features of the acceleration spectra and waveform envelopes. The output seismograms display clear P and S-wave arrivals with the appropriate energy content and relative onset timing. The synthesized Peak Ground Acceleration (PGA) estimates are also consistent with observations. We develop a set of metrics that allow us to assess the training process's stability and tune model hyperparameters. We further show that the trained generator network can interpolate to conditions where no earthquake ground motion recordings exist. Our approach allows the on-demand synthesis of accelerograms for engineering purposes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Continuity (mathematics) ; Earthquake accelerograms ; Earthquakes ; Ground motion ; S waves ; Seismograms ; Stability analysis ; Statistical analysis ; Synthesis ; Waveforms</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2462303427?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Florez, Manuel A</creatorcontrib><creatorcontrib>Caporale, Michaelangelo</creatorcontrib><creatorcontrib>Buabthong, Pakpoom</creatorcontrib><creatorcontrib>Ross, Zachary E</creatorcontrib><creatorcontrib>Asimaki, Domniki</creatorcontrib><creatorcontrib>Meier, Men-Andrin</creatorcontrib><title>Data-driven Accelerogram Synthesis using Deep Generative Models</title><title>arXiv.org</title><description>Robust estimation of ground motions generated by scenario earthquakes is critical for many engineering applications. We leverage recent advances in Generative Adversarial Networks (GANs) to develop a new framework for synthesizing earthquake acceleration time histories. Our approach extends the Wasserstein GAN formulation to allow for the generation of ground-motions conditioned on a set of continuous physical variables. Our model is trained to approximate the intrinsic probability distribution of a massive set of strong-motion recordings from Japan. We show that the trained generator model can synthesize realistic 3-Component accelerograms conditioned on magnitude, distance, and \(V_{s30}\). Our model captures the expected statistical features of the acceleration spectra and waveform envelopes. The output seismograms display clear P and S-wave arrivals with the appropriate energy content and relative onset timing. The synthesized Peak Ground Acceleration (PGA) estimates are also consistent with observations. We develop a set of metrics that allow us to assess the training process's stability and tune model hyperparameters. We further show that the trained generator network can interpolate to conditions where no earthquake ground motion recordings exist. Our approach allows the on-demand synthesis of accelerograms for engineering purposes.</description><subject>Continuity (mathematics)</subject><subject>Earthquake accelerograms</subject><subject>Earthquakes</subject><subject>Ground motion</subject><subject>S waves</subject><subject>Seismograms</subject><subject>Stability analysis</subject><subject>Statistical analysis</subject><subject>Synthesis</subject><subject>Waveforms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScC_GkFzcR62Vx0r2E9rSmxKTmpIJvbwcfwOkf_m_GIpByk2xTgAWLiXohBOQFZJmM2K5UQSWN12-0fF_XaNC7zqsnv31seCBp4iNp2_ESceBntOhVmDS_ugYNrdi8VYYw_nXJ1qfj_XBJBu9eI1Koejd6O60K0hykkCkU8j_1BfKfOJY</recordid><startdate>20201118</startdate><enddate>20201118</enddate><creator>Florez, Manuel A</creator><creator>Caporale, Michaelangelo</creator><creator>Buabthong, Pakpoom</creator><creator>Ross, Zachary E</creator><creator>Asimaki, Domniki</creator><creator>Meier, Men-Andrin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201118</creationdate><title>Data-driven Accelerogram Synthesis using Deep Generative Models</title><author>Florez, Manuel A ; Caporale, Michaelangelo ; Buabthong, Pakpoom ; Ross, Zachary E ; Asimaki, Domniki ; Meier, Men-Andrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24623034273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Continuity (mathematics)</topic><topic>Earthquake accelerograms</topic><topic>Earthquakes</topic><topic>Ground motion</topic><topic>S waves</topic><topic>Seismograms</topic><topic>Stability analysis</topic><topic>Statistical analysis</topic><topic>Synthesis</topic><topic>Waveforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Florez, Manuel A</creatorcontrib><creatorcontrib>Caporale, Michaelangelo</creatorcontrib><creatorcontrib>Buabthong, Pakpoom</creatorcontrib><creatorcontrib>Ross, Zachary E</creatorcontrib><creatorcontrib>Asimaki, Domniki</creatorcontrib><creatorcontrib>Meier, Men-Andrin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florez, Manuel A</au><au>Caporale, Michaelangelo</au><au>Buabthong, Pakpoom</au><au>Ross, Zachary E</au><au>Asimaki, Domniki</au><au>Meier, Men-Andrin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data-driven Accelerogram Synthesis using Deep Generative Models</atitle><jtitle>arXiv.org</jtitle><date>2020-11-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Robust estimation of ground motions generated by scenario earthquakes is critical for many engineering applications. We leverage recent advances in Generative Adversarial Networks (GANs) to develop a new framework for synthesizing earthquake acceleration time histories. Our approach extends the Wasserstein GAN formulation to allow for the generation of ground-motions conditioned on a set of continuous physical variables. Our model is trained to approximate the intrinsic probability distribution of a massive set of strong-motion recordings from Japan. We show that the trained generator model can synthesize realistic 3-Component accelerograms conditioned on magnitude, distance, and \(V_{s30}\). Our model captures the expected statistical features of the acceleration spectra and waveform envelopes. The output seismograms display clear P and S-wave arrivals with the appropriate energy content and relative onset timing. The synthesized Peak Ground Acceleration (PGA) estimates are also consistent with observations. We develop a set of metrics that allow us to assess the training process's stability and tune model hyperparameters. We further show that the trained generator network can interpolate to conditions where no earthquake ground motion recordings exist. Our approach allows the on-demand synthesis of accelerograms for engineering purposes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2462303427 |
source | Publicly Available Content (ProQuest) |
subjects | Continuity (mathematics) Earthquake accelerograms Earthquakes Ground motion S waves Seismograms Stability analysis Statistical analysis Synthesis Waveforms |
title | Data-driven Accelerogram Synthesis using Deep Generative Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data-driven%20Accelerogram%20Synthesis%20using%20Deep%20Generative%20Models&rft.jtitle=arXiv.org&rft.au=Florez,%20Manuel%20A&rft.date=2020-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2462303427%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24623034273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2462303427&rft_id=info:pmid/&rfr_iscdi=true |