Loading…
Decorated Dyck paths, polyominoes, and the Delta conjecture
We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both [Haglund 2004] and [Aval et al. 2014]. This settles in particular the cases \(\langle\cdot,e_{n-d}h_d\rangle\) and \(\langle\cdot,h_{n-d}h_d\rangle\)...
Saved in:
Published in: | arXiv.org 2020-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | D'Adderio, Michele Iraci, Alessandro Anna Vanden Wyngaerd |
description | We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both [Haglund 2004] and [Aval et al. 2014]. This settles in particular the cases \(\langle\cdot,e_{n-d}h_d\rangle\) and \(\langle\cdot,h_{n-d}h_d\rangle\) of the Delta conjecture of Haglund, Remmel and Wilson (2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g. from [Haglund et al. 2018], [Zabrocki 2016], [Aval et al. 2015]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in [Haglund 2004]. This is an edited merge of arXiv:1712.08787 and arXiv:1709.08736 |
doi_str_mv | 10.48550/arxiv.2011.09568 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2462533757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462533757</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-96ce1e41e664d79686351e4e9ffcfca065e1b2e3cdbb3ac992632d7e46aa01223</originalsourceid><addsrcrecordid>eNotjctKxDAUQIMgOIzzAe4Cbm1N7s2jwZVMfcGAm9kPaXrLTK1NbVNx_t6Crg5ncw5jN1LkqtBa3Pvx5_Sdg5AyF06b4oKtAFFmhQK4YptpaoUQYCxojSv2UFKIo09U8_IcPvjg03G640PszvHz1EdaxPc1T0fiJXXJ8xD7lkKaR7pml43vJtr8c832z0_77Wu2e3952z7uMq_BZs4EkqQkGaNq60xhUC9OrmlCE7wwmmQFhKGuKvTBOTAItSVlvBcSANfs9i87jPFrpikd2jiP_XI8gDKgEa22-At9fUi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462533757</pqid></control><display><type>article</type><title>Decorated Dyck paths, polyominoes, and the Delta conjecture</title><source>ProQuest - Publicly Available Content Database</source><creator>D'Adderio, Michele ; Iraci, Alessandro ; Anna Vanden Wyngaerd</creator><creatorcontrib>D'Adderio, Michele ; Iraci, Alessandro ; Anna Vanden Wyngaerd</creatorcontrib><description>We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both [Haglund 2004] and [Aval et al. 2014]. This settles in particular the cases \(\langle\cdot,e_{n-d}h_d\rangle\) and \(\langle\cdot,h_{n-d}h_d\rangle\) of the Delta conjecture of Haglund, Remmel and Wilson (2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g. from [Haglund et al. 2018], [Zabrocki 2016], [Aval et al. 2015]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in [Haglund 2004]. This is an edited merge of arXiv:1712.08787 and arXiv:1709.08736</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2011.09568</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Decoration ; Identities ; Mathematical analysis ; Polynomials</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2462533757?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>D'Adderio, Michele</creatorcontrib><creatorcontrib>Iraci, Alessandro</creatorcontrib><creatorcontrib>Anna Vanden Wyngaerd</creatorcontrib><title>Decorated Dyck paths, polyominoes, and the Delta conjecture</title><title>arXiv.org</title><description>We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both [Haglund 2004] and [Aval et al. 2014]. This settles in particular the cases \(\langle\cdot,e_{n-d}h_d\rangle\) and \(\langle\cdot,h_{n-d}h_d\rangle\) of the Delta conjecture of Haglund, Remmel and Wilson (2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g. from [Haglund et al. 2018], [Zabrocki 2016], [Aval et al. 2015]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in [Haglund 2004]. This is an edited merge of arXiv:1712.08787 and arXiv:1709.08736</description><subject>Combinatorial analysis</subject><subject>Decoration</subject><subject>Identities</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKxDAUQIMgOIzzAe4Cbm1N7s2jwZVMfcGAm9kPaXrLTK1NbVNx_t6Crg5ncw5jN1LkqtBa3Pvx5_Sdg5AyF06b4oKtAFFmhQK4YptpaoUQYCxojSv2UFKIo09U8_IcPvjg03G640PszvHz1EdaxPc1T0fiJXXJ8xD7lkKaR7pml43vJtr8c832z0_77Wu2e3952z7uMq_BZs4EkqQkGaNq60xhUC9OrmlCE7wwmmQFhKGuKvTBOTAItSVlvBcSANfs9i87jPFrpikd2jiP_XI8gDKgEa22-At9fUi4</recordid><startdate>20201118</startdate><enddate>20201118</enddate><creator>D'Adderio, Michele</creator><creator>Iraci, Alessandro</creator><creator>Anna Vanden Wyngaerd</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201118</creationdate><title>Decorated Dyck paths, polyominoes, and the Delta conjecture</title><author>D'Adderio, Michele ; Iraci, Alessandro ; Anna Vanden Wyngaerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-96ce1e41e664d79686351e4e9ffcfca065e1b2e3cdbb3ac992632d7e46aa01223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Decoration</topic><topic>Identities</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>D'Adderio, Michele</creatorcontrib><creatorcontrib>Iraci, Alessandro</creatorcontrib><creatorcontrib>Anna Vanden Wyngaerd</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Adderio, Michele</au><au>Iraci, Alessandro</au><au>Anna Vanden Wyngaerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decorated Dyck paths, polyominoes, and the Delta conjecture</atitle><jtitle>arXiv.org</jtitle><date>2020-11-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both [Haglund 2004] and [Aval et al. 2014]. This settles in particular the cases \(\langle\cdot,e_{n-d}h_d\rangle\) and \(\langle\cdot,h_{n-d}h_d\rangle\) of the Delta conjecture of Haglund, Remmel and Wilson (2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g. from [Haglund et al. 2018], [Zabrocki 2016], [Aval et al. 2015]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in [Haglund 2004]. This is an edited merge of arXiv:1712.08787 and arXiv:1709.08736</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2011.09568</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2462533757 |
source | ProQuest - Publicly Available Content Database |
subjects | Combinatorial analysis Decoration Identities Mathematical analysis Polynomials |
title | Decorated Dyck paths, polyominoes, and the Delta conjecture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decorated%20Dyck%20paths,%20polyominoes,%20and%20the%20Delta%20conjecture&rft.jtitle=arXiv.org&rft.au=D'Adderio,%20Michele&rft.date=2020-11-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2011.09568&rft_dat=%3Cproquest%3E2462533757%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-96ce1e41e664d79686351e4e9ffcfca065e1b2e3cdbb3ac992632d7e46aa01223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2462533757&rft_id=info:pmid/&rfr_iscdi=true |