Loading…

Decorated Dyck paths, polyominoes, and the Delta conjecture

We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both [Haglund 2004] and [Aval et al. 2014]. This settles in particular the cases \(\langle\cdot,e_{n-d}h_d\rangle\) and \(\langle\cdot,h_{n-d}h_d\rangle\)...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-11
Main Authors: D'Adderio, Michele, Iraci, Alessandro, Anna Vanden Wyngaerd
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator D'Adderio, Michele
Iraci, Alessandro
Anna Vanden Wyngaerd
description We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both [Haglund 2004] and [Aval et al. 2014]. This settles in particular the cases \(\langle\cdot,e_{n-d}h_d\rangle\) and \(\langle\cdot,h_{n-d}h_d\rangle\) of the Delta conjecture of Haglund, Remmel and Wilson (2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g. from [Haglund et al. 2018], [Zabrocki 2016], [Aval et al. 2015]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in [Haglund 2004]. This is an edited merge of arXiv:1712.08787 and arXiv:1709.08736
doi_str_mv 10.48550/arxiv.2011.09568
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2462533757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462533757</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-96ce1e41e664d79686351e4e9ffcfca065e1b2e3cdbb3ac992632d7e46aa01223</originalsourceid><addsrcrecordid>eNotjctKxDAUQIMgOIzzAe4Cbm1N7s2jwZVMfcGAm9kPaXrLTK1NbVNx_t6Crg5ncw5jN1LkqtBa3Pvx5_Sdg5AyF06b4oKtAFFmhQK4YptpaoUQYCxojSv2UFKIo09U8_IcPvjg03G640PszvHz1EdaxPc1T0fiJXXJ8xD7lkKaR7pml43vJtr8c832z0_77Wu2e3952z7uMq_BZs4EkqQkGaNq60xhUC9OrmlCE7wwmmQFhKGuKvTBOTAItSVlvBcSANfs9i87jPFrpikd2jiP_XI8gDKgEa22-At9fUi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462533757</pqid></control><display><type>article</type><title>Decorated Dyck paths, polyominoes, and the Delta conjecture</title><source>ProQuest - Publicly Available Content Database</source><creator>D'Adderio, Michele ; Iraci, Alessandro ; Anna Vanden Wyngaerd</creator><creatorcontrib>D'Adderio, Michele ; Iraci, Alessandro ; Anna Vanden Wyngaerd</creatorcontrib><description>We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both [Haglund 2004] and [Aval et al. 2014]. This settles in particular the cases \(\langle\cdot,e_{n-d}h_d\rangle\) and \(\langle\cdot,h_{n-d}h_d\rangle\) of the Delta conjecture of Haglund, Remmel and Wilson (2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g. from [Haglund et al. 2018], [Zabrocki 2016], [Aval et al. 2015]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in [Haglund 2004]. This is an edited merge of arXiv:1712.08787 and arXiv:1709.08736</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2011.09568</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Decoration ; Identities ; Mathematical analysis ; Polynomials</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2462533757?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>D'Adderio, Michele</creatorcontrib><creatorcontrib>Iraci, Alessandro</creatorcontrib><creatorcontrib>Anna Vanden Wyngaerd</creatorcontrib><title>Decorated Dyck paths, polyominoes, and the Delta conjecture</title><title>arXiv.org</title><description>We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both [Haglund 2004] and [Aval et al. 2014]. This settles in particular the cases \(\langle\cdot,e_{n-d}h_d\rangle\) and \(\langle\cdot,h_{n-d}h_d\rangle\) of the Delta conjecture of Haglund, Remmel and Wilson (2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g. from [Haglund et al. 2018], [Zabrocki 2016], [Aval et al. 2015]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in [Haglund 2004]. This is an edited merge of arXiv:1712.08787 and arXiv:1709.08736</description><subject>Combinatorial analysis</subject><subject>Decoration</subject><subject>Identities</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKxDAUQIMgOIzzAe4Cbm1N7s2jwZVMfcGAm9kPaXrLTK1NbVNx_t6Crg5ncw5jN1LkqtBa3Pvx5_Sdg5AyF06b4oKtAFFmhQK4YptpaoUQYCxojSv2UFKIo09U8_IcPvjg03G640PszvHz1EdaxPc1T0fiJXXJ8xD7lkKaR7pml43vJtr8c832z0_77Wu2e3952z7uMq_BZs4EkqQkGaNq60xhUC9OrmlCE7wwmmQFhKGuKvTBOTAItSVlvBcSANfs9i87jPFrpikd2jiP_XI8gDKgEa22-At9fUi4</recordid><startdate>20201118</startdate><enddate>20201118</enddate><creator>D'Adderio, Michele</creator><creator>Iraci, Alessandro</creator><creator>Anna Vanden Wyngaerd</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201118</creationdate><title>Decorated Dyck paths, polyominoes, and the Delta conjecture</title><author>D'Adderio, Michele ; Iraci, Alessandro ; Anna Vanden Wyngaerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-96ce1e41e664d79686351e4e9ffcfca065e1b2e3cdbb3ac992632d7e46aa01223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Decoration</topic><topic>Identities</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>D'Adderio, Michele</creatorcontrib><creatorcontrib>Iraci, Alessandro</creatorcontrib><creatorcontrib>Anna Vanden Wyngaerd</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Adderio, Michele</au><au>Iraci, Alessandro</au><au>Anna Vanden Wyngaerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decorated Dyck paths, polyominoes, and the Delta conjecture</atitle><jtitle>arXiv.org</jtitle><date>2020-11-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both [Haglund 2004] and [Aval et al. 2014]. This settles in particular the cases \(\langle\cdot,e_{n-d}h_d\rangle\) and \(\langle\cdot,h_{n-d}h_d\rangle\) of the Delta conjecture of Haglund, Remmel and Wilson (2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g. from [Haglund et al. 2018], [Zabrocki 2016], [Aval et al. 2015]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in [Haglund 2004]. This is an edited merge of arXiv:1712.08787 and arXiv:1709.08736</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2011.09568</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2462533757
source ProQuest - Publicly Available Content Database
subjects Combinatorial analysis
Decoration
Identities
Mathematical analysis
Polynomials
title Decorated Dyck paths, polyominoes, and the Delta conjecture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decorated%20Dyck%20paths,%20polyominoes,%20and%20the%20Delta%20conjecture&rft.jtitle=arXiv.org&rft.au=D'Adderio,%20Michele&rft.date=2020-11-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2011.09568&rft_dat=%3Cproquest%3E2462533757%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-96ce1e41e664d79686351e4e9ffcfca065e1b2e3cdbb3ac992632d7e46aa01223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2462533757&rft_id=info:pmid/&rfr_iscdi=true