Loading…
New analysis and application of fractional order Schrödinger equation using with Atangana–Batogna numerical scheme
In this work, an analytical approximation to the solution of Schrodinger equation has been provided. The fractional derivative used in this equation is the Caputo derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on the power law. While solving...
Saved in:
Published in: | Numerical methods for partial differential equations 2021-01, Vol.37 (1), p.196-209 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2975-6160ef7fd1776ac392a15e8e977768d6d56630d79d4ee48987a5b1531c9d0e363 |
---|---|
cites | cdi_FETCH-LOGICAL-c2975-6160ef7fd1776ac392a15e8e977768d6d56630d79d4ee48987a5b1531c9d0e363 |
container_end_page | 209 |
container_issue | 1 |
container_start_page | 196 |
container_title | Numerical methods for partial differential equations |
container_volume | 37 |
creator | Akçetin, Eyüp Koca, Ilknur Kiliç, Muhammet Burak |
description | In this work, an analytical approximation to the solution of Schrodinger equation has been provided. The fractional derivative used in this equation is the Caputo derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on the power law. While solving the fractional order Schrodinger equation, Atangana–Batogna numerical method is presented for fractional order equation. We obtain an efficient recurrence relation for solving these kinds of equations. To illustrate the usefulness of the numerical scheme, the numerical simulations are presented. The results show that the numerical scheme is very effective and simple. |
doi_str_mv | 10.1002/num.22525 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463117316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463117316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-6160ef7fd1776ac392a15e8e977768d6d56630d79d4ee48987a5b1531c9d0e363</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIazuxHS9LxZ9UYAGV2FkmnrSp0iS1E1XdcQfuwgW4CSfBJWxZzbzRN09vBqFzSkaUEDauuvWIMc74ARpQotKIJUwcogGRiYooV6_H6MT7FSGUcqoGqHuELTaVKXe-8KGx2DRNWWSmLeoK1znOncn2vSlx7Sw4_Jwt3denLapFELDperLzYYC3RbvEk9ZUi2D5_f5xZdp6URkcUoELpiX22RLWcIqOclN6OPurQzS_uX6Z3kWzp9v76WQWZUxJHgkqCOQyt1RKYbJYMUM5pKBk0KkVlgsREyuVTQCSVKXS8DfKY5opSyAW8RBd9L6Nqzcd-Fav6s6FW7xmiYgplTHdU5c9lbnaewe5blyxNm6nKdH7r-qQX_9-NbDjnt0WJez-B_Xj_KHf-AFLWHwX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463117316</pqid></control><display><type>article</type><title>New analysis and application of fractional order Schrödinger equation using with Atangana–Batogna numerical scheme</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Akçetin, Eyüp ; Koca, Ilknur ; Kiliç, Muhammet Burak</creator><creatorcontrib>Akçetin, Eyüp ; Koca, Ilknur ; Kiliç, Muhammet Burak</creatorcontrib><description>In this work, an analytical approximation to the solution of Schrodinger equation has been provided. The fractional derivative used in this equation is the Caputo derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on the power law. While solving the fractional order Schrodinger equation, Atangana–Batogna numerical method is presented for fractional order equation. We obtain an efficient recurrence relation for solving these kinds of equations. To illustrate the usefulness of the numerical scheme, the numerical simulations are presented. The results show that the numerical scheme is very effective and simple.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22525</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>fractional order differentiation ; Mathematical models ; Nonlinear equations ; Numerical methods ; numerical scheme ; Schrodinger equation ; Schrödinger equation</subject><ispartof>Numerical methods for partial differential equations, 2021-01, Vol.37 (1), p.196-209</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-6160ef7fd1776ac392a15e8e977768d6d56630d79d4ee48987a5b1531c9d0e363</citedby><cites>FETCH-LOGICAL-c2975-6160ef7fd1776ac392a15e8e977768d6d56630d79d4ee48987a5b1531c9d0e363</cites><orcidid>0000-0002-9608-5250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Akçetin, Eyüp</creatorcontrib><creatorcontrib>Koca, Ilknur</creatorcontrib><creatorcontrib>Kiliç, Muhammet Burak</creatorcontrib><title>New analysis and application of fractional order Schrödinger equation using with Atangana–Batogna numerical scheme</title><title>Numerical methods for partial differential equations</title><description>In this work, an analytical approximation to the solution of Schrodinger equation has been provided. The fractional derivative used in this equation is the Caputo derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on the power law. While solving the fractional order Schrodinger equation, Atangana–Batogna numerical method is presented for fractional order equation. We obtain an efficient recurrence relation for solving these kinds of equations. To illustrate the usefulness of the numerical scheme, the numerical simulations are presented. The results show that the numerical scheme is very effective and simple.</description><subject>fractional order differentiation</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Numerical methods</subject><subject>numerical scheme</subject><subject>Schrodinger equation</subject><subject>Schrödinger equation</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIazuxHS9LxZ9UYAGV2FkmnrSp0iS1E1XdcQfuwgW4CSfBJWxZzbzRN09vBqFzSkaUEDauuvWIMc74ARpQotKIJUwcogGRiYooV6_H6MT7FSGUcqoGqHuELTaVKXe-8KGx2DRNWWSmLeoK1znOncn2vSlx7Sw4_Jwt3denLapFELDperLzYYC3RbvEk9ZUi2D5_f5xZdp6URkcUoELpiX22RLWcIqOclN6OPurQzS_uX6Z3kWzp9v76WQWZUxJHgkqCOQyt1RKYbJYMUM5pKBk0KkVlgsREyuVTQCSVKXS8DfKY5opSyAW8RBd9L6Nqzcd-Fav6s6FW7xmiYgplTHdU5c9lbnaewe5blyxNm6nKdH7r-qQX_9-NbDjnt0WJez-B_Xj_KHf-AFLWHwX</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Akçetin, Eyüp</creator><creator>Koca, Ilknur</creator><creator>Kiliç, Muhammet Burak</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9608-5250</orcidid></search><sort><creationdate>202101</creationdate><title>New analysis and application of fractional order Schrödinger equation using with Atangana–Batogna numerical scheme</title><author>Akçetin, Eyüp ; Koca, Ilknur ; Kiliç, Muhammet Burak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-6160ef7fd1776ac392a15e8e977768d6d56630d79d4ee48987a5b1531c9d0e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>fractional order differentiation</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Numerical methods</topic><topic>numerical scheme</topic><topic>Schrodinger equation</topic><topic>Schrödinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akçetin, Eyüp</creatorcontrib><creatorcontrib>Koca, Ilknur</creatorcontrib><creatorcontrib>Kiliç, Muhammet Burak</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akçetin, Eyüp</au><au>Koca, Ilknur</au><au>Kiliç, Muhammet Burak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New analysis and application of fractional order Schrödinger equation using with Atangana–Batogna numerical scheme</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2021-01</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>196</spage><epage>209</epage><pages>196-209</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this work, an analytical approximation to the solution of Schrodinger equation has been provided. The fractional derivative used in this equation is the Caputo derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on the power law. While solving the fractional order Schrodinger equation, Atangana–Batogna numerical method is presented for fractional order equation. We obtain an efficient recurrence relation for solving these kinds of equations. To illustrate the usefulness of the numerical scheme, the numerical simulations are presented. The results show that the numerical scheme is very effective and simple.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/num.22525</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-9608-5250</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2021-01, Vol.37 (1), p.196-209 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_2463117316 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | fractional order differentiation Mathematical models Nonlinear equations Numerical methods numerical scheme Schrodinger equation Schrödinger equation |
title | New analysis and application of fractional order Schrödinger equation using with Atangana–Batogna numerical scheme |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20analysis%20and%20application%20of%20fractional%20order%20Schr%C3%B6dinger%20equation%20using%20with%20Atangana%E2%80%93Batogna%20numerical%20scheme&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Ak%C3%A7etin,%20Ey%C3%BCp&rft.date=2021-01&rft.volume=37&rft.issue=1&rft.spage=196&rft.epage=209&rft.pages=196-209&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22525&rft_dat=%3Cproquest_cross%3E2463117316%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2975-6160ef7fd1776ac392a15e8e977768d6d56630d79d4ee48987a5b1531c9d0e363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2463117316&rft_id=info:pmid/&rfr_iscdi=true |