Loading…
The role of inertia in the rupture of ultrathin liquid films
Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is pr...
Saved in:
Published in: | Physics of fluids (1994) 2020-11, Vol.32 (11) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Moreno-Boza, D. Martínez-Calvo, A. Sevilla, A. |
description | Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the structure of the rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces, leading to a self-similar asymptotic regime with hmin ∝ τ2/5 as τ → 0, where hmin is the minimum film thickness and τ is the time remaining before rupture. The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free surface. A potential-flow description of the irrotational core is provided, which is matched with the vortical layers, allowing us to present a complete parameter-free asymptotic description of inertia-dominated film rupture. |
doi_str_mv | 10.1063/5.0031430 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2463783413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463783413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_8GAK4WpuZNHJ-BGSn1AwU1dh8wkoSnTZppkBP-9GVtw7-oczvm4Fw5Ct4BngDl5ZDOMCVCCz9AEcC3KOef8fPRzXHJO4BJdxbjFmRIVn6Cn9cYUwXem8LZwexOSU1mLNMZDn4bw2wxdCiptctG5w-B0YV23i9fowqoumpuTTtHny3K9eCtXH6_vi-dV2RJepVLUrdWAtaKGE2WZMbYxTQ4rUTEAA5oDpYrqBppaMM2YUtQK3Wpha6MqMkV3x7t98IfBxCS3fgj7_FJWlJN5TSiQTN0fqTb4GIOxsg9up8K3BCzHcSSTp3Ey-3BkY-uSSs7v_wd_-fAHyl5b8gMsuXKF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463783413</pqid></control><display><type>article</type><title>The role of inertia in the rupture of ultrathin liquid films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Moreno-Boza, D. ; Martínez-Calvo, A. ; Sevilla, A.</creator><creatorcontrib>Moreno-Boza, D. ; Martínez-Calvo, A. ; Sevilla, A.</creatorcontrib><description>Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the structure of the rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces, leading to a self-similar asymptotic regime with hmin ∝ τ2/5 as τ → 0, where hmin is the minimum film thickness and τ is the time remaining before rupture. The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free surface. A potential-flow description of the irrotational core is provided, which is matched with the vortical layers, allowing us to present a complete parameter-free asymptotic description of inertia-dominated film rupture.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0031430</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asymptotic properties ; Boundary layers ; Computational fluid dynamics ; Drying ; Film thickness ; Fluid dynamics ; Free surfaces ; Inertia ; Newtonian liquids ; Physics ; Potential flow ; Rupturing ; Self-similarity ; Substrates ; Thin films ; Van der Waals forces</subject><ispartof>Physics of fluids (1994), 2020-11, Vol.32 (11)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23</citedby><cites>FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23</cites><orcidid>0000-0001-9749-2520 ; 0000-0002-8663-0382 ; 0000-0002-2109-8145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Moreno-Boza, D.</creatorcontrib><creatorcontrib>Martínez-Calvo, A.</creatorcontrib><creatorcontrib>Sevilla, A.</creatorcontrib><title>The role of inertia in the rupture of ultrathin liquid films</title><title>Physics of fluids (1994)</title><description>Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the structure of the rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces, leading to a self-similar asymptotic regime with hmin ∝ τ2/5 as τ → 0, where hmin is the minimum film thickness and τ is the time remaining before rupture. The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free surface. A potential-flow description of the irrotational core is provided, which is matched with the vortical layers, allowing us to present a complete parameter-free asymptotic description of inertia-dominated film rupture.</description><subject>Asymptotic properties</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Drying</subject><subject>Film thickness</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Inertia</subject><subject>Newtonian liquids</subject><subject>Physics</subject><subject>Potential flow</subject><subject>Rupturing</subject><subject>Self-similarity</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Van der Waals forces</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_8GAK4WpuZNHJ-BGSn1AwU1dh8wkoSnTZppkBP-9GVtw7-oczvm4Fw5Ct4BngDl5ZDOMCVCCz9AEcC3KOef8fPRzXHJO4BJdxbjFmRIVn6Cn9cYUwXem8LZwexOSU1mLNMZDn4bw2wxdCiptctG5w-B0YV23i9fowqoumpuTTtHny3K9eCtXH6_vi-dV2RJepVLUrdWAtaKGE2WZMbYxTQ4rUTEAA5oDpYrqBppaMM2YUtQK3Wpha6MqMkV3x7t98IfBxCS3fgj7_FJWlJN5TSiQTN0fqTb4GIOxsg9up8K3BCzHcSSTp3Ey-3BkY-uSSs7v_wd_-fAHyl5b8gMsuXKF</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Moreno-Boza, D.</creator><creator>Martínez-Calvo, A.</creator><creator>Sevilla, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9749-2520</orcidid><orcidid>https://orcid.org/0000-0002-8663-0382</orcidid><orcidid>https://orcid.org/0000-0002-2109-8145</orcidid></search><sort><creationdate>20201101</creationdate><title>The role of inertia in the rupture of ultrathin liquid films</title><author>Moreno-Boza, D. ; Martínez-Calvo, A. ; Sevilla, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic properties</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Drying</topic><topic>Film thickness</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Inertia</topic><topic>Newtonian liquids</topic><topic>Physics</topic><topic>Potential flow</topic><topic>Rupturing</topic><topic>Self-similarity</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Van der Waals forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno-Boza, D.</creatorcontrib><creatorcontrib>Martínez-Calvo, A.</creatorcontrib><creatorcontrib>Sevilla, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno-Boza, D.</au><au>Martínez-Calvo, A.</au><au>Sevilla, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of inertia in the rupture of ultrathin liquid films</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the structure of the rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces, leading to a self-similar asymptotic regime with hmin ∝ τ2/5 as τ → 0, where hmin is the minimum film thickness and τ is the time remaining before rupture. The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free surface. A potential-flow description of the irrotational core is provided, which is matched with the vortical layers, allowing us to present a complete parameter-free asymptotic description of inertia-dominated film rupture.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0031430</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9749-2520</orcidid><orcidid>https://orcid.org/0000-0002-8663-0382</orcidid><orcidid>https://orcid.org/0000-0002-2109-8145</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-11, Vol.32 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2463783413 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Asymptotic properties Boundary layers Computational fluid dynamics Drying Film thickness Fluid dynamics Free surfaces Inertia Newtonian liquids Physics Potential flow Rupturing Self-similarity Substrates Thin films Van der Waals forces |
title | The role of inertia in the rupture of ultrathin liquid films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20inertia%20in%20the%20rupture%20of%20ultrathin%20liquid%20films&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Moreno-Boza,%20D.&rft.date=2020-11-01&rft.volume=32&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0031430&rft_dat=%3Cproquest_scita%3E2463783413%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2463783413&rft_id=info:pmid/&rfr_iscdi=true |