Loading…

The role of inertia in the rupture of ultrathin liquid films

Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is pr...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2020-11, Vol.32 (11)
Main Authors: Moreno-Boza, D., Martínez-Calvo, A., Sevilla, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23
cites cdi_FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23
container_end_page
container_issue 11
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Moreno-Boza, D.
Martínez-Calvo, A.
Sevilla, A.
description Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the structure of the rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces, leading to a self-similar asymptotic regime with hmin ∝ τ2/5 as τ → 0, where hmin is the minimum film thickness and τ is the time remaining before rupture. The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free surface. A potential-flow description of the irrotational core is provided, which is matched with the vortical layers, allowing us to present a complete parameter-free asymptotic description of inertia-dominated film rupture.
doi_str_mv 10.1063/5.0031430
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2463783413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463783413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_8GAK4WpuZNHJ-BGSn1AwU1dh8wkoSnTZppkBP-9GVtw7-oczvm4Fw5Ct4BngDl5ZDOMCVCCz9AEcC3KOef8fPRzXHJO4BJdxbjFmRIVn6Cn9cYUwXem8LZwexOSU1mLNMZDn4bw2wxdCiptctG5w-B0YV23i9fowqoumpuTTtHny3K9eCtXH6_vi-dV2RJepVLUrdWAtaKGE2WZMbYxTQ4rUTEAA5oDpYrqBppaMM2YUtQK3Wpha6MqMkV3x7t98IfBxCS3fgj7_FJWlJN5TSiQTN0fqTb4GIOxsg9up8K3BCzHcSSTp3Ey-3BkY-uSSs7v_wd_-fAHyl5b8gMsuXKF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463783413</pqid></control><display><type>article</type><title>The role of inertia in the rupture of ultrathin liquid films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Moreno-Boza, D. ; Martínez-Calvo, A. ; Sevilla, A.</creator><creatorcontrib>Moreno-Boza, D. ; Martínez-Calvo, A. ; Sevilla, A.</creatorcontrib><description>Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the structure of the rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces, leading to a self-similar asymptotic regime with hmin ∝ τ2/5 as τ → 0, where hmin is the minimum film thickness and τ is the time remaining before rupture. The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free surface. A potential-flow description of the irrotational core is provided, which is matched with the vortical layers, allowing us to present a complete parameter-free asymptotic description of inertia-dominated film rupture.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0031430</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asymptotic properties ; Boundary layers ; Computational fluid dynamics ; Drying ; Film thickness ; Fluid dynamics ; Free surfaces ; Inertia ; Newtonian liquids ; Physics ; Potential flow ; Rupturing ; Self-similarity ; Substrates ; Thin films ; Van der Waals forces</subject><ispartof>Physics of fluids (1994), 2020-11, Vol.32 (11)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23</citedby><cites>FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23</cites><orcidid>0000-0001-9749-2520 ; 0000-0002-8663-0382 ; 0000-0002-2109-8145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Moreno-Boza, D.</creatorcontrib><creatorcontrib>Martínez-Calvo, A.</creatorcontrib><creatorcontrib>Sevilla, A.</creatorcontrib><title>The role of inertia in the rupture of ultrathin liquid films</title><title>Physics of fluids (1994)</title><description>Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the structure of the rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces, leading to a self-similar asymptotic regime with hmin ∝ τ2/5 as τ → 0, where hmin is the minimum film thickness and τ is the time remaining before rupture. The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free surface. A potential-flow description of the irrotational core is provided, which is matched with the vortical layers, allowing us to present a complete parameter-free asymptotic description of inertia-dominated film rupture.</description><subject>Asymptotic properties</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Drying</subject><subject>Film thickness</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Inertia</subject><subject>Newtonian liquids</subject><subject>Physics</subject><subject>Potential flow</subject><subject>Rupturing</subject><subject>Self-similarity</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Van der Waals forces</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_8GAK4WpuZNHJ-BGSn1AwU1dh8wkoSnTZppkBP-9GVtw7-oczvm4Fw5Ct4BngDl5ZDOMCVCCz9AEcC3KOef8fPRzXHJO4BJdxbjFmRIVn6Cn9cYUwXem8LZwexOSU1mLNMZDn4bw2wxdCiptctG5w-B0YV23i9fowqoumpuTTtHny3K9eCtXH6_vi-dV2RJepVLUrdWAtaKGE2WZMbYxTQ4rUTEAA5oDpYrqBppaMM2YUtQK3Wpha6MqMkV3x7t98IfBxCS3fgj7_FJWlJN5TSiQTN0fqTb4GIOxsg9up8K3BCzHcSSTp3Ey-3BkY-uSSs7v_wd_-fAHyl5b8gMsuXKF</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Moreno-Boza, D.</creator><creator>Martínez-Calvo, A.</creator><creator>Sevilla, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9749-2520</orcidid><orcidid>https://orcid.org/0000-0002-8663-0382</orcidid><orcidid>https://orcid.org/0000-0002-2109-8145</orcidid></search><sort><creationdate>20201101</creationdate><title>The role of inertia in the rupture of ultrathin liquid films</title><author>Moreno-Boza, D. ; Martínez-Calvo, A. ; Sevilla, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic properties</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Drying</topic><topic>Film thickness</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Inertia</topic><topic>Newtonian liquids</topic><topic>Physics</topic><topic>Potential flow</topic><topic>Rupturing</topic><topic>Self-similarity</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Van der Waals forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno-Boza, D.</creatorcontrib><creatorcontrib>Martínez-Calvo, A.</creatorcontrib><creatorcontrib>Sevilla, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno-Boza, D.</au><au>Martínez-Calvo, A.</au><au>Sevilla, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of inertia in the rupture of ultrathin liquid films</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the structure of the rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces, leading to a self-similar asymptotic regime with hmin ∝ τ2/5 as τ → 0, where hmin is the minimum film thickness and τ is the time remaining before rupture. The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free surface. A potential-flow description of the irrotational core is provided, which is matched with the vortical layers, allowing us to present a complete parameter-free asymptotic description of inertia-dominated film rupture.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0031430</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9749-2520</orcidid><orcidid>https://orcid.org/0000-0002-8663-0382</orcidid><orcidid>https://orcid.org/0000-0002-2109-8145</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-11, Vol.32 (11)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2463783413
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Asymptotic properties
Boundary layers
Computational fluid dynamics
Drying
Film thickness
Fluid dynamics
Free surfaces
Inertia
Newtonian liquids
Physics
Potential flow
Rupturing
Self-similarity
Substrates
Thin films
Van der Waals forces
title The role of inertia in the rupture of ultrathin liquid films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20inertia%20in%20the%20rupture%20of%20ultrathin%20liquid%20films&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Moreno-Boza,%20D.&rft.date=2020-11-01&rft.volume=32&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0031430&rft_dat=%3Cproquest_scita%3E2463783413%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-98cfd10da4e63af5eefbeb8cf292511e1d6144a4db1b895d55aa4f9dcd9f8ea23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2463783413&rft_id=info:pmid/&rfr_iscdi=true