Loading…
A Monte Carlo study for optimizing the detector of SPECT imaging using a XCAT human phantom
BACKGROUND: Acquiring a high quality image has assigned an important concern for obtaining accurate diagnosis in nuclear medicine. Detector is a critical component of Single Photon Emission Computed Tomography (SPECT) imaging system for giving accurate information from exact pattern of radionuclide...
Saved in:
Published in: | Nuclear medicine review. Central & Eastern Europe 2017-01, Vol.20 (1), p.10-14 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BACKGROUND: Acquiring a high quality image has assigned an important concern for obtaining accurate diagnosis in nuclear medicine. Detector is a critical component of Single Photon Emission Computed Tomography (SPECT) imaging system for giving accurate information from exact pattern of radionuclide distribution in the target organ. The images are strongly affected by the attenuation, scattering, and response of the detector. The conventional detector is mainly made from sodium iodide activated by thallium [NaI(Tl)] in nuclear medicine imaging. The aim of the study. This study has planned to introduce a suitable for an optimized SPECT imaging. SIMIND Monte Carlo program was utilized for simulating a SPECT imaging system with a NaI(Tl) detector, and a low-energy high-resolution (LEHR) collimator. MATERIAL AND METHODS: The Planar and SPECT scans of a 99mTc point source and also an extended Cardiac-Torso (XCAT) computerized phantom with the experiment and simulated systems were prepared. After verification and validation of the simulated system, the similar scans of the phantoms were compared from the point of view of image quality for 7 scintillator crystals including: NaI(Tl), BGO, YAG:Ce, YAP:Ce, LuAG:Ce, LaBr3 and CZT. The parameters of energy and spatial resolution, and sensitivity of the systems were compared. Images were analyzed quantitatively by SSIM algorithm with Zhou Wang and Rouse/Hemami methods, and also qualitatively by two nuclear medicine specialists. RESULTS: Energy resolutions of the mentioned crystals obtained were: 9.864, 9.8545, 10.229, 10.221, 10.230, 10.131and10.223 percentage for 99mTc photopeak 140 Kev, respectively. Finally, SSIM indexes for the related phantom images were calculated to 0.794, 0.738, 0.735, 0.607, 0.760 and 0.811 compared to the NaI(Tl) acquired images, respectively. Medical diagnosis of the SPECT images of the phantom showed that the system with BGO crystal potentially provides a better detectability for hot and cold lesions in the liver of XCAT phantom. CONCLUSIONS: The results showed that BGO crystal has a high sensitivity and resolution, and also provides a better lesion detectability from the point of view of image quality on XCAT phantom. |
---|---|
ISSN: | 1506-9680 1644-4345 |
DOI: | 10.5603/NMR.2017.0001 |