Loading…

Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial

Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie–B...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2020-11, Vol.128 (20)
Main Authors: Sarrazin, Michaël, Septembre, Ismaël, Hendrickx, Anthony, Reckinger, Nicolas, Dellieu, Louis, Fleury, Guillaume, Seassal, Christian, Mazurczyk, Radoslaw, Faniel, Sébastien, Devouge, Sabrina, Voué, Michel, Deparis, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-caadcec937644091ae61e3a78a91dc0a15550cab3e6d1c27f97757dc3f6a4f253
container_end_page
container_issue 20
container_start_page
container_title Journal of applied physics
container_volume 128
creator Sarrazin, Michaël
Septembre, Ismaël
Hendrickx, Anthony
Reckinger, Nicolas
Dellieu, Louis
Fleury, Guillaume
Seassal, Christian
Mazurczyk, Radoslaw
Faniel, Sébastien
Devouge, Sabrina
Voué, Michel
Deparis, Olivier
description Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie–Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of “quantum” superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted with all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes, while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe that these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing.
doi_str_mv 10.1063/5.0021541
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2464232503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464232503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-caadcec937644091ae61e3a78a91dc0a15550cab3e6d1c27f97757dc3f6a4f253</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK4e_AcBTwpdk6Zp2qMsfsGCl_VcpknqdmmTbpKi9egvN-vuWRgYGB7m5X0QuqZkQUnO7vmCkJTyjJ6gGSVFmQjOySma7a9JUYryHF14vyWE0oKVM_Sztp_gFAaD9degXdtrE6DDg7O2wXH8GK-bSTk7bGzdyjZMWJsNGKkVrie8G8GEscdNN8owQmit8bhxWn-35gNbgwHXzoKqwagEam9drR3udYAeQsyD7hKdNdB5fXXcc_T-9LheviSrt-fX5cMqkWkhQiIBlNSyZCLPMlJS0DnVDEQBJVWSAOWxqYSa6VxRmYqmFIILJVmTQ9aknM3RzeFv7LYbtQ_V1o7OxMgqzfIsZSknLFK3B0o6673TTTVEKeCmipJqr7ji1VFxZO8OrI9a_qr_A_8CK5x-wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464232503</pqid></control><display><type>article</type><title>Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Sarrazin, Michaël ; Septembre, Ismaël ; Hendrickx, Anthony ; Reckinger, Nicolas ; Dellieu, Louis ; Fleury, Guillaume ; Seassal, Christian ; Mazurczyk, Radoslaw ; Faniel, Sébastien ; Devouge, Sabrina ; Voué, Michel ; Deparis, Olivier</creator><creatorcontrib>Sarrazin, Michaël ; Septembre, Ismaël ; Hendrickx, Anthony ; Reckinger, Nicolas ; Dellieu, Louis ; Fleury, Guillaume ; Seassal, Christian ; Mazurczyk, Radoslaw ; Faniel, Sébastien ; Devouge, Sabrina ; Voué, Michel ; Deparis, Olivier</creatorcontrib><description>Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie–Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of “quantum” superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted with all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes, while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe that these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0021541</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorbers ; Absorbers (materials) ; Applied physics ; Broadband ; Expanding universe theory ; Freezing ; Hydrophobic surfaces ; Hydrophobicity ; Metamaterials</subject><ispartof>Journal of applied physics, 2020-11, Vol.128 (20)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-caadcec937644091ae61e3a78a91dc0a15550cab3e6d1c27f97757dc3f6a4f253</cites><orcidid>0000-0001-6451-7584 ; 0000-0002-2854-2982 ; 0000-0003-4029-1095 ; 0000-0002-2161-7208 ; 0000-0002-3856-9089 ; 0000-0003-0779-191X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sarrazin, Michaël</creatorcontrib><creatorcontrib>Septembre, Ismaël</creatorcontrib><creatorcontrib>Hendrickx, Anthony</creatorcontrib><creatorcontrib>Reckinger, Nicolas</creatorcontrib><creatorcontrib>Dellieu, Louis</creatorcontrib><creatorcontrib>Fleury, Guillaume</creatorcontrib><creatorcontrib>Seassal, Christian</creatorcontrib><creatorcontrib>Mazurczyk, Radoslaw</creatorcontrib><creatorcontrib>Faniel, Sébastien</creatorcontrib><creatorcontrib>Devouge, Sabrina</creatorcontrib><creatorcontrib>Voué, Michel</creatorcontrib><creatorcontrib>Deparis, Olivier</creatorcontrib><title>Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial</title><title>Journal of applied physics</title><description>Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie–Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of “quantum” superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted with all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes, while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe that these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing.</description><subject>Absorbers</subject><subject>Absorbers (materials)</subject><subject>Applied physics</subject><subject>Broadband</subject><subject>Expanding universe theory</subject><subject>Freezing</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Metamaterials</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK4e_AcBTwpdk6Zp2qMsfsGCl_VcpknqdmmTbpKi9egvN-vuWRgYGB7m5X0QuqZkQUnO7vmCkJTyjJ6gGSVFmQjOySma7a9JUYryHF14vyWE0oKVM_Sztp_gFAaD9degXdtrE6DDg7O2wXH8GK-bSTk7bGzdyjZMWJsNGKkVrie8G8GEscdNN8owQmit8bhxWn-35gNbgwHXzoKqwagEam9drR3udYAeQsyD7hKdNdB5fXXcc_T-9LheviSrt-fX5cMqkWkhQiIBlNSyZCLPMlJS0DnVDEQBJVWSAOWxqYSa6VxRmYqmFIILJVmTQ9aknM3RzeFv7LYbtQ_V1o7OxMgqzfIsZSknLFK3B0o6673TTTVEKeCmipJqr7ji1VFxZO8OrI9a_qr_A_8CK5x-wQ</recordid><startdate>20201128</startdate><enddate>20201128</enddate><creator>Sarrazin, Michaël</creator><creator>Septembre, Ismaël</creator><creator>Hendrickx, Anthony</creator><creator>Reckinger, Nicolas</creator><creator>Dellieu, Louis</creator><creator>Fleury, Guillaume</creator><creator>Seassal, Christian</creator><creator>Mazurczyk, Radoslaw</creator><creator>Faniel, Sébastien</creator><creator>Devouge, Sabrina</creator><creator>Voué, Michel</creator><creator>Deparis, Olivier</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6451-7584</orcidid><orcidid>https://orcid.org/0000-0002-2854-2982</orcidid><orcidid>https://orcid.org/0000-0003-4029-1095</orcidid><orcidid>https://orcid.org/0000-0002-2161-7208</orcidid><orcidid>https://orcid.org/0000-0002-3856-9089</orcidid><orcidid>https://orcid.org/0000-0003-0779-191X</orcidid></search><sort><creationdate>20201128</creationdate><title>Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial</title><author>Sarrazin, Michaël ; Septembre, Ismaël ; Hendrickx, Anthony ; Reckinger, Nicolas ; Dellieu, Louis ; Fleury, Guillaume ; Seassal, Christian ; Mazurczyk, Radoslaw ; Faniel, Sébastien ; Devouge, Sabrina ; Voué, Michel ; Deparis, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-caadcec937644091ae61e3a78a91dc0a15550cab3e6d1c27f97757dc3f6a4f253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Absorbers (materials)</topic><topic>Applied physics</topic><topic>Broadband</topic><topic>Expanding universe theory</topic><topic>Freezing</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Metamaterials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarrazin, Michaël</creatorcontrib><creatorcontrib>Septembre, Ismaël</creatorcontrib><creatorcontrib>Hendrickx, Anthony</creatorcontrib><creatorcontrib>Reckinger, Nicolas</creatorcontrib><creatorcontrib>Dellieu, Louis</creatorcontrib><creatorcontrib>Fleury, Guillaume</creatorcontrib><creatorcontrib>Seassal, Christian</creatorcontrib><creatorcontrib>Mazurczyk, Radoslaw</creatorcontrib><creatorcontrib>Faniel, Sébastien</creatorcontrib><creatorcontrib>Devouge, Sabrina</creatorcontrib><creatorcontrib>Voué, Michel</creatorcontrib><creatorcontrib>Deparis, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarrazin, Michaël</au><au>Septembre, Ismaël</au><au>Hendrickx, Anthony</au><au>Reckinger, Nicolas</au><au>Dellieu, Louis</au><au>Fleury, Guillaume</au><au>Seassal, Christian</au><au>Mazurczyk, Radoslaw</au><au>Faniel, Sébastien</au><au>Devouge, Sabrina</au><au>Voué, Michel</au><au>Deparis, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial</atitle><jtitle>Journal of applied physics</jtitle><date>2020-11-28</date><risdate>2020</risdate><volume>128</volume><issue>20</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie–Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of “quantum” superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted with all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes, while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe that these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0021541</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6451-7584</orcidid><orcidid>https://orcid.org/0000-0002-2854-2982</orcidid><orcidid>https://orcid.org/0000-0003-4029-1095</orcidid><orcidid>https://orcid.org/0000-0002-2161-7208</orcidid><orcidid>https://orcid.org/0000-0002-3856-9089</orcidid><orcidid>https://orcid.org/0000-0003-0779-191X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-11, Vol.128 (20)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2464232503
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Absorbers
Absorbers (materials)
Applied physics
Broadband
Expanding universe theory
Freezing
Hydrophobic surfaces
Hydrophobicity
Metamaterials
title Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20an%20experimental%20proof%20of%20superhydrophobicity%20enhanced%20by%20quantum%20fluctuations%20freezing%20on%20a%20broadband-absorber%20metamaterial&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Sarrazin,%20Micha%C3%ABl&rft.date=2020-11-28&rft.volume=128&rft.issue=20&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0021541&rft_dat=%3Cproquest_scita%3E2464232503%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-caadcec937644091ae61e3a78a91dc0a15550cab3e6d1c27f97757dc3f6a4f253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2464232503&rft_id=info:pmid/&rfr_iscdi=true