Loading…
Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial
Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie–B...
Saved in:
Published in: | Journal of applied physics 2020-11, Vol.128 (20) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-caadcec937644091ae61e3a78a91dc0a15550cab3e6d1c27f97757dc3f6a4f253 |
container_end_page | |
container_issue | 20 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 128 |
creator | Sarrazin, Michaël Septembre, Ismaël Hendrickx, Anthony Reckinger, Nicolas Dellieu, Louis Fleury, Guillaume Seassal, Christian Mazurczyk, Radoslaw Faniel, Sébastien Devouge, Sabrina Voué, Michel Deparis, Olivier |
description | Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie–Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of “quantum” superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted with all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes, while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe that these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing. |
doi_str_mv | 10.1063/5.0021541 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2464232503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464232503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-caadcec937644091ae61e3a78a91dc0a15550cab3e6d1c27f97757dc3f6a4f253</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK4e_AcBTwpdk6Zp2qMsfsGCl_VcpknqdmmTbpKi9egvN-vuWRgYGB7m5X0QuqZkQUnO7vmCkJTyjJ6gGSVFmQjOySma7a9JUYryHF14vyWE0oKVM_Sztp_gFAaD9degXdtrE6DDg7O2wXH8GK-bSTk7bGzdyjZMWJsNGKkVrie8G8GEscdNN8owQmit8bhxWn-35gNbgwHXzoKqwagEam9drR3udYAeQsyD7hKdNdB5fXXcc_T-9LheviSrt-fX5cMqkWkhQiIBlNSyZCLPMlJS0DnVDEQBJVWSAOWxqYSa6VxRmYqmFIILJVmTQ9aknM3RzeFv7LYbtQ_V1o7OxMgqzfIsZSknLFK3B0o6673TTTVEKeCmipJqr7ji1VFxZO8OrI9a_qr_A_8CK5x-wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464232503</pqid></control><display><type>article</type><title>Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Sarrazin, Michaël ; Septembre, Ismaël ; Hendrickx, Anthony ; Reckinger, Nicolas ; Dellieu, Louis ; Fleury, Guillaume ; Seassal, Christian ; Mazurczyk, Radoslaw ; Faniel, Sébastien ; Devouge, Sabrina ; Voué, Michel ; Deparis, Olivier</creator><creatorcontrib>Sarrazin, Michaël ; Septembre, Ismaël ; Hendrickx, Anthony ; Reckinger, Nicolas ; Dellieu, Louis ; Fleury, Guillaume ; Seassal, Christian ; Mazurczyk, Radoslaw ; Faniel, Sébastien ; Devouge, Sabrina ; Voué, Michel ; Deparis, Olivier</creatorcontrib><description>Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie–Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of “quantum” superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted with all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes, while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe that these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0021541</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorbers ; Absorbers (materials) ; Applied physics ; Broadband ; Expanding universe theory ; Freezing ; Hydrophobic surfaces ; Hydrophobicity ; Metamaterials</subject><ispartof>Journal of applied physics, 2020-11, Vol.128 (20)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-caadcec937644091ae61e3a78a91dc0a15550cab3e6d1c27f97757dc3f6a4f253</cites><orcidid>0000-0001-6451-7584 ; 0000-0002-2854-2982 ; 0000-0003-4029-1095 ; 0000-0002-2161-7208 ; 0000-0002-3856-9089 ; 0000-0003-0779-191X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sarrazin, Michaël</creatorcontrib><creatorcontrib>Septembre, Ismaël</creatorcontrib><creatorcontrib>Hendrickx, Anthony</creatorcontrib><creatorcontrib>Reckinger, Nicolas</creatorcontrib><creatorcontrib>Dellieu, Louis</creatorcontrib><creatorcontrib>Fleury, Guillaume</creatorcontrib><creatorcontrib>Seassal, Christian</creatorcontrib><creatorcontrib>Mazurczyk, Radoslaw</creatorcontrib><creatorcontrib>Faniel, Sébastien</creatorcontrib><creatorcontrib>Devouge, Sabrina</creatorcontrib><creatorcontrib>Voué, Michel</creatorcontrib><creatorcontrib>Deparis, Olivier</creatorcontrib><title>Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial</title><title>Journal of applied physics</title><description>Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie–Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of “quantum” superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted with all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes, while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe that these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing.</description><subject>Absorbers</subject><subject>Absorbers (materials)</subject><subject>Applied physics</subject><subject>Broadband</subject><subject>Expanding universe theory</subject><subject>Freezing</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Metamaterials</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK4e_AcBTwpdk6Zp2qMsfsGCl_VcpknqdmmTbpKi9egvN-vuWRgYGB7m5X0QuqZkQUnO7vmCkJTyjJ6gGSVFmQjOySma7a9JUYryHF14vyWE0oKVM_Sztp_gFAaD9degXdtrE6DDg7O2wXH8GK-bSTk7bGzdyjZMWJsNGKkVrie8G8GEscdNN8owQmit8bhxWn-35gNbgwHXzoKqwagEam9drR3udYAeQsyD7hKdNdB5fXXcc_T-9LheviSrt-fX5cMqkWkhQiIBlNSyZCLPMlJS0DnVDEQBJVWSAOWxqYSa6VxRmYqmFIILJVmTQ9aknM3RzeFv7LYbtQ_V1o7OxMgqzfIsZSknLFK3B0o6673TTTVEKeCmipJqr7ji1VFxZO8OrI9a_qr_A_8CK5x-wQ</recordid><startdate>20201128</startdate><enddate>20201128</enddate><creator>Sarrazin, Michaël</creator><creator>Septembre, Ismaël</creator><creator>Hendrickx, Anthony</creator><creator>Reckinger, Nicolas</creator><creator>Dellieu, Louis</creator><creator>Fleury, Guillaume</creator><creator>Seassal, Christian</creator><creator>Mazurczyk, Radoslaw</creator><creator>Faniel, Sébastien</creator><creator>Devouge, Sabrina</creator><creator>Voué, Michel</creator><creator>Deparis, Olivier</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6451-7584</orcidid><orcidid>https://orcid.org/0000-0002-2854-2982</orcidid><orcidid>https://orcid.org/0000-0003-4029-1095</orcidid><orcidid>https://orcid.org/0000-0002-2161-7208</orcidid><orcidid>https://orcid.org/0000-0002-3856-9089</orcidid><orcidid>https://orcid.org/0000-0003-0779-191X</orcidid></search><sort><creationdate>20201128</creationdate><title>Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial</title><author>Sarrazin, Michaël ; Septembre, Ismaël ; Hendrickx, Anthony ; Reckinger, Nicolas ; Dellieu, Louis ; Fleury, Guillaume ; Seassal, Christian ; Mazurczyk, Radoslaw ; Faniel, Sébastien ; Devouge, Sabrina ; Voué, Michel ; Deparis, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-caadcec937644091ae61e3a78a91dc0a15550cab3e6d1c27f97757dc3f6a4f253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Absorbers (materials)</topic><topic>Applied physics</topic><topic>Broadband</topic><topic>Expanding universe theory</topic><topic>Freezing</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Metamaterials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarrazin, Michaël</creatorcontrib><creatorcontrib>Septembre, Ismaël</creatorcontrib><creatorcontrib>Hendrickx, Anthony</creatorcontrib><creatorcontrib>Reckinger, Nicolas</creatorcontrib><creatorcontrib>Dellieu, Louis</creatorcontrib><creatorcontrib>Fleury, Guillaume</creatorcontrib><creatorcontrib>Seassal, Christian</creatorcontrib><creatorcontrib>Mazurczyk, Radoslaw</creatorcontrib><creatorcontrib>Faniel, Sébastien</creatorcontrib><creatorcontrib>Devouge, Sabrina</creatorcontrib><creatorcontrib>Voué, Michel</creatorcontrib><creatorcontrib>Deparis, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarrazin, Michaël</au><au>Septembre, Ismaël</au><au>Hendrickx, Anthony</au><au>Reckinger, Nicolas</au><au>Dellieu, Louis</au><au>Fleury, Guillaume</au><au>Seassal, Christian</au><au>Mazurczyk, Radoslaw</au><au>Faniel, Sébastien</au><au>Devouge, Sabrina</au><au>Voué, Michel</au><au>Deparis, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial</atitle><jtitle>Journal of applied physics</jtitle><date>2020-11-28</date><risdate>2020</risdate><volume>128</volume><issue>20</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial that acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie–Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of “quantum” superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted with all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes, while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe that these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0021541</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6451-7584</orcidid><orcidid>https://orcid.org/0000-0002-2854-2982</orcidid><orcidid>https://orcid.org/0000-0003-4029-1095</orcidid><orcidid>https://orcid.org/0000-0002-2161-7208</orcidid><orcidid>https://orcid.org/0000-0002-3856-9089</orcidid><orcidid>https://orcid.org/0000-0003-0779-191X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-11, Vol.128 (20) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2464232503 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Absorbers Absorbers (materials) Applied physics Broadband Expanding universe theory Freezing Hydrophobic surfaces Hydrophobicity Metamaterials |
title | Toward an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20an%20experimental%20proof%20of%20superhydrophobicity%20enhanced%20by%20quantum%20fluctuations%20freezing%20on%20a%20broadband-absorber%20metamaterial&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Sarrazin,%20Micha%C3%ABl&rft.date=2020-11-28&rft.volume=128&rft.issue=20&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0021541&rft_dat=%3Cproquest_scita%3E2464232503%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-caadcec937644091ae61e3a78a91dc0a15550cab3e6d1c27f97757dc3f6a4f253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2464232503&rft_id=info:pmid/&rfr_iscdi=true |