Loading…
Bottom-up synthesis of nitrogen-containing graphene nanoribbons from the tetrabenzopentacene molecular motif
Atomically-defined graphene nanoribbons (GNRs), which are narrow strips of graphene that feature a quantum confinement-induced bandgap, have shown great promise for applications in the next generation of semiconductor devices. Although numerous studies have demonstrated the bottom-up synthesis of al...
Saved in:
Published in: | Carbon (New York) 2020-12, Vol.170, p.677-684 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Atomically-defined graphene nanoribbons (GNRs), which are narrow strips of graphene that feature a quantum confinement-induced bandgap, have shown great promise for applications in the next generation of semiconductor devices. Although numerous studies have demonstrated the bottom-up synthesis of all-carbon GNRs, a comparatively limited number of reports have focused on the preparation of nitrogen-doped GNRs, with two general types of architectures demonstrated to date. Herein, we describe the design, synthesis, and characterization of a new class of nitrogen-containing GNRs consisting of repeating tetrabenzopentacene molecular subunits. Our findings may afford additional possibilities and opportunities with regard to the directed bottom-up synthesis of heteroatom-doped, carbon-based nanoscale electronics.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2020.07.018 |