Loading…
Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins
Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat trans...
Saved in:
Published in: | Processes 2020-12, Vol.8 (12), p.1528 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3 |
container_end_page | |
container_issue | 12 |
container_start_page | 1528 |
container_title | Processes |
container_volume | 8 |
creator | Jurtz, Nico Flaischlen, Steffen Scherf, Sören C. Kraume, Matthias Wehinger, Gregor D. |
description | Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat transport in the vicinity of the reactor wall is hindered. Particle-resolved computational fluid dynamics (CFD) is used to investigate the impact of internal heat fins on the near wall radial heat transport in slender packed beds filled with spherical particles. The simulation results are validated against experimental measurements in terms of particle count and pressure drop. The simulation results show that internal heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to an overall increased thermal performance of the system. In a wide flow range (100 |
doi_str_mv | 10.3390/pr8121528 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2464951720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464951720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNQe_AYLnjxE91-ym6OW1hYKFlrPYbM726Smm7ibHPz2plTEucyD-b3h8RC6p-SJ85w8d0FRRlOmrtCEMSaTXFJ5_U_folmMRzJOTrlKswnaLXylvan9AfcV4H0F4aQbvIXg2lF5A7h1eNeAtxDwVptPsPgVbBzx0A6HCq99D8GPnhXoHi9rH-_QjdNNhNnvnqKP5WI_XyWb97f1_GWTGJazPnEpL7kllmimlSotFVIQA0ZkJc-cYtyWUnJNXTpeRSkUlI5qYl3uaEqV5lP0cPnbhfZrgNgXx3Y4R4kFE5nIUyoZGanHC2VCG2MAV3ShPunwXVBSnGsr_mrjPwgnXtE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464951720</pqid></control><display><type>article</type><title>Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jurtz, Nico ; Flaischlen, Steffen ; Scherf, Sören C. ; Kraume, Matthias ; Wehinger, Gregor D.</creator><creatorcontrib>Jurtz, Nico ; Flaischlen, Steffen ; Scherf, Sören C. ; Kraume, Matthias ; Wehinger, Gregor D.</creatorcontrib><description>Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat transport in the vicinity of the reactor wall is hindered. Particle-resolved computational fluid dynamics (CFD) is used to investigate the impact of internal heat fins on the near wall radial heat transport in slender packed beds filled with spherical particles. The simulation results are validated against experimental measurements in terms of particle count and pressure drop. The simulation results show that internal heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to an overall increased thermal performance of the system. In a wide flow range (100<Rep<1000), an increase of up to 35% in wall heat transfer coefficient and almost 90% in effective radial thermal conductivity is observed, respectively.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr8121528</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chemical reactions ; Computational fluid dynamics ; Computer applications ; Fins ; Fluid dynamics ; Heat conductivity ; Heat transfer ; Heat transfer coefficients ; Investigations ; Nuclear engineering ; Nuclear safety ; Packed beds ; Pressure drop ; Reactors ; Reynolds number ; Spheres ; Thermal conductivity ; Velocity ; Wall effects</subject><ispartof>Processes, 2020-12, Vol.8 (12), p.1528</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3</citedby><cites>FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3</cites><orcidid>0000-0001-5746-6408 ; 0000-0002-1774-3391 ; 0000-0003-0426-6159 ; 0000-0002-3116-7220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2464951720/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2464951720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Jurtz, Nico</creatorcontrib><creatorcontrib>Flaischlen, Steffen</creatorcontrib><creatorcontrib>Scherf, Sören C.</creatorcontrib><creatorcontrib>Kraume, Matthias</creatorcontrib><creatorcontrib>Wehinger, Gregor D.</creatorcontrib><title>Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins</title><title>Processes</title><description>Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat transport in the vicinity of the reactor wall is hindered. Particle-resolved computational fluid dynamics (CFD) is used to investigate the impact of internal heat fins on the near wall radial heat transport in slender packed beds filled with spherical particles. The simulation results are validated against experimental measurements in terms of particle count and pressure drop. The simulation results show that internal heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to an overall increased thermal performance of the system. In a wide flow range (100<Rep<1000), an increase of up to 35% in wall heat transfer coefficient and almost 90% in effective radial thermal conductivity is observed, respectively.</description><subject>Chemical reactions</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Fins</subject><subject>Fluid dynamics</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Investigations</subject><subject>Nuclear engineering</subject><subject>Nuclear safety</subject><subject>Packed beds</subject><subject>Pressure drop</subject><subject>Reactors</subject><subject>Reynolds number</subject><subject>Spheres</subject><subject>Thermal conductivity</subject><subject>Velocity</subject><subject>Wall effects</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkE9Lw0AQxRdRsNQe_AYLnjxE91-ym6OW1hYKFlrPYbM726Smm7ibHPz2plTEucyD-b3h8RC6p-SJ85w8d0FRRlOmrtCEMSaTXFJ5_U_folmMRzJOTrlKswnaLXylvan9AfcV4H0F4aQbvIXg2lF5A7h1eNeAtxDwVptPsPgVbBzx0A6HCq99D8GPnhXoHi9rH-_QjdNNhNnvnqKP5WI_XyWb97f1_GWTGJazPnEpL7kllmimlSotFVIQA0ZkJc-cYtyWUnJNXTpeRSkUlI5qYl3uaEqV5lP0cPnbhfZrgNgXx3Y4R4kFE5nIUyoZGanHC2VCG2MAV3ShPunwXVBSnGsr_mrjPwgnXtE</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Jurtz, Nico</creator><creator>Flaischlen, Steffen</creator><creator>Scherf, Sören C.</creator><creator>Kraume, Matthias</creator><creator>Wehinger, Gregor D.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5746-6408</orcidid><orcidid>https://orcid.org/0000-0002-1774-3391</orcidid><orcidid>https://orcid.org/0000-0003-0426-6159</orcidid><orcidid>https://orcid.org/0000-0002-3116-7220</orcidid></search><sort><creationdate>20201201</creationdate><title>Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins</title><author>Jurtz, Nico ; Flaischlen, Steffen ; Scherf, Sören C. ; Kraume, Matthias ; Wehinger, Gregor D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reactions</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Fins</topic><topic>Fluid dynamics</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Investigations</topic><topic>Nuclear engineering</topic><topic>Nuclear safety</topic><topic>Packed beds</topic><topic>Pressure drop</topic><topic>Reactors</topic><topic>Reynolds number</topic><topic>Spheres</topic><topic>Thermal conductivity</topic><topic>Velocity</topic><topic>Wall effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurtz, Nico</creatorcontrib><creatorcontrib>Flaischlen, Steffen</creatorcontrib><creatorcontrib>Scherf, Sören C.</creatorcontrib><creatorcontrib>Kraume, Matthias</creatorcontrib><creatorcontrib>Wehinger, Gregor D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurtz, Nico</au><au>Flaischlen, Steffen</au><au>Scherf, Sören C.</au><au>Kraume, Matthias</au><au>Wehinger, Gregor D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins</atitle><jtitle>Processes</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>8</volume><issue>12</issue><spage>1528</spage><pages>1528-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat transport in the vicinity of the reactor wall is hindered. Particle-resolved computational fluid dynamics (CFD) is used to investigate the impact of internal heat fins on the near wall radial heat transport in slender packed beds filled with spherical particles. The simulation results are validated against experimental measurements in terms of particle count and pressure drop. The simulation results show that internal heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to an overall increased thermal performance of the system. In a wide flow range (100<Rep<1000), an increase of up to 35% in wall heat transfer coefficient and almost 90% in effective radial thermal conductivity is observed, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr8121528</doi><orcidid>https://orcid.org/0000-0001-5746-6408</orcidid><orcidid>https://orcid.org/0000-0002-1774-3391</orcidid><orcidid>https://orcid.org/0000-0003-0426-6159</orcidid><orcidid>https://orcid.org/0000-0002-3116-7220</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2020-12, Vol.8 (12), p.1528 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2464951720 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Chemical reactions Computational fluid dynamics Computer applications Fins Fluid dynamics Heat conductivity Heat transfer Heat transfer coefficients Investigations Nuclear engineering Nuclear safety Packed beds Pressure drop Reactors Reynolds number Spheres Thermal conductivity Velocity Wall effects |
title | Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Thermal%20Performance%20of%20Slender%20Packed%20Beds%20through%20Internal%20Heat%20Fins&rft.jtitle=Processes&rft.au=Jurtz,%20Nico&rft.date=2020-12-01&rft.volume=8&rft.issue=12&rft.spage=1528&rft.pages=1528-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr8121528&rft_dat=%3Cproquest_cross%3E2464951720%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2464951720&rft_id=info:pmid/&rfr_iscdi=true |