Loading…

Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins

Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat trans...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2020-12, Vol.8 (12), p.1528
Main Authors: Jurtz, Nico, Flaischlen, Steffen, Scherf, Sören C., Kraume, Matthias, Wehinger, Gregor D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3
cites cdi_FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3
container_end_page
container_issue 12
container_start_page 1528
container_title Processes
container_volume 8
creator Jurtz, Nico
Flaischlen, Steffen
Scherf, Sören C.
Kraume, Matthias
Wehinger, Gregor D.
description Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat transport in the vicinity of the reactor wall is hindered. Particle-resolved computational fluid dynamics (CFD) is used to investigate the impact of internal heat fins on the near wall radial heat transport in slender packed beds filled with spherical particles. The simulation results are validated against experimental measurements in terms of particle count and pressure drop. The simulation results show that internal heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to an overall increased thermal performance of the system. In a wide flow range (100
doi_str_mv 10.3390/pr8121528
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2464951720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464951720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNQe_AYLnjxE91-ym6OW1hYKFlrPYbM726Smm7ibHPz2plTEucyD-b3h8RC6p-SJ85w8d0FRRlOmrtCEMSaTXFJ5_U_folmMRzJOTrlKswnaLXylvan9AfcV4H0F4aQbvIXg2lF5A7h1eNeAtxDwVptPsPgVbBzx0A6HCq99D8GPnhXoHi9rH-_QjdNNhNnvnqKP5WI_XyWb97f1_GWTGJazPnEpL7kllmimlSotFVIQA0ZkJc-cYtyWUnJNXTpeRSkUlI5qYl3uaEqV5lP0cPnbhfZrgNgXx3Y4R4kFE5nIUyoZGanHC2VCG2MAV3ShPunwXVBSnGsr_mrjPwgnXtE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464951720</pqid></control><display><type>article</type><title>Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jurtz, Nico ; Flaischlen, Steffen ; Scherf, Sören C. ; Kraume, Matthias ; Wehinger, Gregor D.</creator><creatorcontrib>Jurtz, Nico ; Flaischlen, Steffen ; Scherf, Sören C. ; Kraume, Matthias ; Wehinger, Gregor D.</creatorcontrib><description>Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat transport in the vicinity of the reactor wall is hindered. Particle-resolved computational fluid dynamics (CFD) is used to investigate the impact of internal heat fins on the near wall radial heat transport in slender packed beds filled with spherical particles. The simulation results are validated against experimental measurements in terms of particle count and pressure drop. The simulation results show that internal heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to an overall increased thermal performance of the system. In a wide flow range (100&lt;Rep&lt;1000), an increase of up to 35% in wall heat transfer coefficient and almost 90% in effective radial thermal conductivity is observed, respectively.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr8121528</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chemical reactions ; Computational fluid dynamics ; Computer applications ; Fins ; Fluid dynamics ; Heat conductivity ; Heat transfer ; Heat transfer coefficients ; Investigations ; Nuclear engineering ; Nuclear safety ; Packed beds ; Pressure drop ; Reactors ; Reynolds number ; Spheres ; Thermal conductivity ; Velocity ; Wall effects</subject><ispartof>Processes, 2020-12, Vol.8 (12), p.1528</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3</citedby><cites>FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3</cites><orcidid>0000-0001-5746-6408 ; 0000-0002-1774-3391 ; 0000-0003-0426-6159 ; 0000-0002-3116-7220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2464951720/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2464951720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Jurtz, Nico</creatorcontrib><creatorcontrib>Flaischlen, Steffen</creatorcontrib><creatorcontrib>Scherf, Sören C.</creatorcontrib><creatorcontrib>Kraume, Matthias</creatorcontrib><creatorcontrib>Wehinger, Gregor D.</creatorcontrib><title>Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins</title><title>Processes</title><description>Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat transport in the vicinity of the reactor wall is hindered. Particle-resolved computational fluid dynamics (CFD) is used to investigate the impact of internal heat fins on the near wall radial heat transport in slender packed beds filled with spherical particles. The simulation results are validated against experimental measurements in terms of particle count and pressure drop. The simulation results show that internal heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to an overall increased thermal performance of the system. In a wide flow range (100&lt;Rep&lt;1000), an increase of up to 35% in wall heat transfer coefficient and almost 90% in effective radial thermal conductivity is observed, respectively.</description><subject>Chemical reactions</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Fins</subject><subject>Fluid dynamics</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Investigations</subject><subject>Nuclear engineering</subject><subject>Nuclear safety</subject><subject>Packed beds</subject><subject>Pressure drop</subject><subject>Reactors</subject><subject>Reynolds number</subject><subject>Spheres</subject><subject>Thermal conductivity</subject><subject>Velocity</subject><subject>Wall effects</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkE9Lw0AQxRdRsNQe_AYLnjxE91-ym6OW1hYKFlrPYbM726Smm7ibHPz2plTEucyD-b3h8RC6p-SJ85w8d0FRRlOmrtCEMSaTXFJ5_U_folmMRzJOTrlKswnaLXylvan9AfcV4H0F4aQbvIXg2lF5A7h1eNeAtxDwVptPsPgVbBzx0A6HCq99D8GPnhXoHi9rH-_QjdNNhNnvnqKP5WI_XyWb97f1_GWTGJazPnEpL7kllmimlSotFVIQA0ZkJc-cYtyWUnJNXTpeRSkUlI5qYl3uaEqV5lP0cPnbhfZrgNgXx3Y4R4kFE5nIUyoZGanHC2VCG2MAV3ShPunwXVBSnGsr_mrjPwgnXtE</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Jurtz, Nico</creator><creator>Flaischlen, Steffen</creator><creator>Scherf, Sören C.</creator><creator>Kraume, Matthias</creator><creator>Wehinger, Gregor D.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5746-6408</orcidid><orcidid>https://orcid.org/0000-0002-1774-3391</orcidid><orcidid>https://orcid.org/0000-0003-0426-6159</orcidid><orcidid>https://orcid.org/0000-0002-3116-7220</orcidid></search><sort><creationdate>20201201</creationdate><title>Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins</title><author>Jurtz, Nico ; Flaischlen, Steffen ; Scherf, Sören C. ; Kraume, Matthias ; Wehinger, Gregor D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reactions</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Fins</topic><topic>Fluid dynamics</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Investigations</topic><topic>Nuclear engineering</topic><topic>Nuclear safety</topic><topic>Packed beds</topic><topic>Pressure drop</topic><topic>Reactors</topic><topic>Reynolds number</topic><topic>Spheres</topic><topic>Thermal conductivity</topic><topic>Velocity</topic><topic>Wall effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurtz, Nico</creatorcontrib><creatorcontrib>Flaischlen, Steffen</creatorcontrib><creatorcontrib>Scherf, Sören C.</creatorcontrib><creatorcontrib>Kraume, Matthias</creatorcontrib><creatorcontrib>Wehinger, Gregor D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurtz, Nico</au><au>Flaischlen, Steffen</au><au>Scherf, Sören C.</au><au>Kraume, Matthias</au><au>Wehinger, Gregor D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins</atitle><jtitle>Processes</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>8</volume><issue>12</issue><spage>1528</spage><pages>1528-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat transport in the vicinity of the reactor wall is hindered. Particle-resolved computational fluid dynamics (CFD) is used to investigate the impact of internal heat fins on the near wall radial heat transport in slender packed beds filled with spherical particles. The simulation results are validated against experimental measurements in terms of particle count and pressure drop. The simulation results show that internal heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to an overall increased thermal performance of the system. In a wide flow range (100&lt;Rep&lt;1000), an increase of up to 35% in wall heat transfer coefficient and almost 90% in effective radial thermal conductivity is observed, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr8121528</doi><orcidid>https://orcid.org/0000-0001-5746-6408</orcidid><orcidid>https://orcid.org/0000-0002-1774-3391</orcidid><orcidid>https://orcid.org/0000-0003-0426-6159</orcidid><orcidid>https://orcid.org/0000-0002-3116-7220</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2020-12, Vol.8 (12), p.1528
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2464951720
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Chemical reactions
Computational fluid dynamics
Computer applications
Fins
Fluid dynamics
Heat conductivity
Heat transfer
Heat transfer coefficients
Investigations
Nuclear engineering
Nuclear safety
Packed beds
Pressure drop
Reactors
Reynolds number
Spheres
Thermal conductivity
Velocity
Wall effects
title Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Thermal%20Performance%20of%20Slender%20Packed%20Beds%20through%20Internal%20Heat%20Fins&rft.jtitle=Processes&rft.au=Jurtz,%20Nico&rft.date=2020-12-01&rft.volume=8&rft.issue=12&rft.spage=1528&rft.pages=1528-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr8121528&rft_dat=%3Cproquest_cross%3E2464951720%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-f53b3d0d0a2a88bd14740cec46b36f823db773a1f588b4b48ebf1a0df9f1518a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2464951720&rft_id=info:pmid/&rfr_iscdi=true