Loading…
Product Concentration, Yield and Productivity in Anaerobic Digestion to Produce Short Chain Organic Acids: A Critical Analysis of Literature Data
In order to make anaerobic digestion-based processes for short chain organic acid (SCOA) production attractive, the key performance variables, i.e., concentration, yield, and productivity of the produced SCOAs need to be maximised. This study analysed recent literature, looking for the effect of pro...
Saved in:
Published in: | Processes 2020-12, Vol.8 (12), p.1538 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to make anaerobic digestion-based processes for short chain organic acid (SCOA) production attractive, the key performance variables, i.e., concentration, yield, and productivity of the produced SCOAs need to be maximised. This study analysed recent literature, looking for the effect of process operating parameters (feed concentration, pH, temperature, and residence time) on the performance variables. Data from 551 experiments were analysed. Mean values of the SCOA concentration, yield, and productivity were 10 g l−1, 32% (chemical oxygen demand (COD) COD−1), and 1.9 g l−1 day−1, respectively. Feed concentration and residence time had the most important effect. Higher feed concentration corresponded to higher product concentration and productivity, but to lower yield. The mean feed concentration was 109 gCOD l−1 and 19 gCOD l−1 in the experiments with the highest product concentrations and in the experiments with the highest yields, respectively. Shorter residence times corresponded to higher productivity. The mean HRT (hydraulic residence time) in the experiments with the highest productivities was 2.5 days. Sequencing batch reactors gave higher values of the performance variables (mean values 29 g l−1, 41% COD COD−1, and 12 g l−1 day−1 for product concentration, yield, and productivity, respectively) than processes without phase separation. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr8121538 |