Loading…

10

We fabricated a quadruple-interface perpendicular magnetic tunnel junction (MTJ) (Quad-MTJ) down to 33 nm using physical vapor-deposition, reactive ion etching, and damage-control integration process technologies that we developed under a 300-mm process. We demonstrated the greater scalability and h...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2020-01, Vol.67 (12), p.5368
Main Authors: Miura, Sadahiko, Nishioka, Koichi, Naganuma, Hiroshi, Nguyen T V A, Honjo, Hiroaki, Ikeda, Shoji, Watanabe, Toshinari, Inoue, Hirofumi, Niwa, Masaaki, Tanigawa, Takaho, Noguchi, Yasuo, Yoshizuka, Toru, Yasuhira, Mitsuo, Endoh, Tetsuo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page 5368
container_title IEEE transactions on electron devices
container_volume 67
creator Miura, Sadahiko
Nishioka, Koichi
Naganuma, Hiroshi
Nguyen T V A
Honjo, Hiroaki
Ikeda, Shoji
Watanabe, Toshinari
Inoue, Hirofumi
Niwa, Masaaki
Tanigawa, Takaho
Noguchi, Yasuo
Yoshizuka, Toru
Yasuhira, Mitsuo
Endoh, Tetsuo
description We fabricated a quadruple-interface perpendicular magnetic tunnel junction (MTJ) (Quad-MTJ) down to 33 nm using physical vapor-deposition, reactive ion etching, and damage-control integration process technologies that we developed under a 300-mm process. We demonstrated the greater scalability and higher writing speed of Quad-MTJ compared with double-interface perpendicular MTJ: 1) it has twice the thermal stability factor—1X nm Quad-MTJ can achieve 10 years retention—while maintaining a low resistance-area product and high tunnel magnetoresistance ratio; 2) smaller overdrive ratio of write voltage to obtain a sufficiently low write-error rate; 2) smaller pulsewidth dependence of the switching current; and 4) more than double the write efficiency at 10-ns write operation down to 33-nm MTJ. The effective suppression of the switching current increase for higher write speeds was explained by the spin-transfer-torque model using the Fokker-Planck equation. Our 33-nm Quad-MTJ also achieved excellent endurance (at least 1011) owing to its higher write efficiency and low-damage integration-process technology. It is thus a promising method for low power, high speed, and reliable STT-MRAM with excellent scalability down to the 1X nm node.
doi_str_mv 10.1109/TED.2020.3025749
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2465435013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465435013</sourcerecordid><originalsourceid>FETCH-proquest_journals_24654350133</originalsourceid><addsrcrecordid>eNqNijsOgkAUAF-IJq6f3t561_dd2FoxHoCeWGBBjCgr95fCA1hNJjMAe8JAhOnY1OfAyBgE2UpNBTgyK32KGhfgEKnySSpZwTrnftaoyg4Kwi0s77dH7nY_buBwqZvT1b_G4T11-dP2wzQ-59SyRlMxJJH_ri_WXCeC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465435013</pqid></control><display><type>article</type><title>10</title><source>IEEE Xplore (Online service)</source><creator>Miura, Sadahiko ; Nishioka, Koichi ; Naganuma, Hiroshi ; Nguyen T V A ; Honjo, Hiroaki ; Ikeda, Shoji ; Watanabe, Toshinari ; Inoue, Hirofumi ; Niwa, Masaaki ; Tanigawa, Takaho ; Noguchi, Yasuo ; Yoshizuka, Toru ; Yasuhira, Mitsuo ; Endoh, Tetsuo</creator><creatorcontrib>Miura, Sadahiko ; Nishioka, Koichi ; Naganuma, Hiroshi ; Nguyen T V A ; Honjo, Hiroaki ; Ikeda, Shoji ; Watanabe, Toshinari ; Inoue, Hirofumi ; Niwa, Masaaki ; Tanigawa, Takaho ; Noguchi, Yasuo ; Yoshizuka, Toru ; Yasuhira, Mitsuo ; Endoh, Tetsuo</creatorcontrib><description>We fabricated a quadruple-interface perpendicular magnetic tunnel junction (MTJ) (Quad-MTJ) down to 33 nm using physical vapor-deposition, reactive ion etching, and damage-control integration process technologies that we developed under a 300-mm process. We demonstrated the greater scalability and higher writing speed of Quad-MTJ compared with double-interface perpendicular MTJ: 1) it has twice the thermal stability factor—1X nm Quad-MTJ can achieve 10 years retention—while maintaining a low resistance-area product and high tunnel magnetoresistance ratio; 2) smaller overdrive ratio of write voltage to obtain a sufficiently low write-error rate; 2) smaller pulsewidth dependence of the switching current; and 4) more than double the write efficiency at 10-ns write operation down to 33-nm MTJ. The effective suppression of the switching current increase for higher write speeds was explained by the spin-transfer-torque model using the Fokker-Planck equation. Our 33-nm Quad-MTJ also achieved excellent endurance (at least 1011) owing to its higher write efficiency and low-damage integration-process technology. It is thus a promising method for low power, high speed, and reliable STT-MRAM with excellent scalability down to the 1X nm node.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3025749</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Damage ; Fokker-Planck equation ; Interface stability ; Low resistance ; Magnetoresistivity ; Physical vapor deposition ; Pulse duration ; Reactive ion etching ; Switching ; Thermal stability ; Tunnel junctions ; Tunnel magnetoresistance</subject><ispartof>IEEE transactions on electron devices, 2020-01, Vol.67 (12), p.5368</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Miura, Sadahiko</creatorcontrib><creatorcontrib>Nishioka, Koichi</creatorcontrib><creatorcontrib>Naganuma, Hiroshi</creatorcontrib><creatorcontrib>Nguyen T V A</creatorcontrib><creatorcontrib>Honjo, Hiroaki</creatorcontrib><creatorcontrib>Ikeda, Shoji</creatorcontrib><creatorcontrib>Watanabe, Toshinari</creatorcontrib><creatorcontrib>Inoue, Hirofumi</creatorcontrib><creatorcontrib>Niwa, Masaaki</creatorcontrib><creatorcontrib>Tanigawa, Takaho</creatorcontrib><creatorcontrib>Noguchi, Yasuo</creatorcontrib><creatorcontrib>Yoshizuka, Toru</creatorcontrib><creatorcontrib>Yasuhira, Mitsuo</creatorcontrib><creatorcontrib>Endoh, Tetsuo</creatorcontrib><title>10</title><title>IEEE transactions on electron devices</title><description>We fabricated a quadruple-interface perpendicular magnetic tunnel junction (MTJ) (Quad-MTJ) down to 33 nm using physical vapor-deposition, reactive ion etching, and damage-control integration process technologies that we developed under a 300-mm process. We demonstrated the greater scalability and higher writing speed of Quad-MTJ compared with double-interface perpendicular MTJ: 1) it has twice the thermal stability factor—1X nm Quad-MTJ can achieve 10 years retention—while maintaining a low resistance-area product and high tunnel magnetoresistance ratio; 2) smaller overdrive ratio of write voltage to obtain a sufficiently low write-error rate; 2) smaller pulsewidth dependence of the switching current; and 4) more than double the write efficiency at 10-ns write operation down to 33-nm MTJ. The effective suppression of the switching current increase for higher write speeds was explained by the spin-transfer-torque model using the Fokker-Planck equation. Our 33-nm Quad-MTJ also achieved excellent endurance (at least 1011) owing to its higher write efficiency and low-damage integration-process technology. It is thus a promising method for low power, high speed, and reliable STT-MRAM with excellent scalability down to the 1X nm node.</description><subject>Damage</subject><subject>Fokker-Planck equation</subject><subject>Interface stability</subject><subject>Low resistance</subject><subject>Magnetoresistivity</subject><subject>Physical vapor deposition</subject><subject>Pulse duration</subject><subject>Reactive ion etching</subject><subject>Switching</subject><subject>Thermal stability</subject><subject>Tunnel junctions</subject><subject>Tunnel magnetoresistance</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNijsOgkAUAF-IJq6f3t561_dd2FoxHoCeWGBBjCgr95fCA1hNJjMAe8JAhOnY1OfAyBgE2UpNBTgyK32KGhfgEKnySSpZwTrnftaoyg4Kwi0s77dH7nY_buBwqZvT1b_G4T11-dP2wzQ-59SyRlMxJJH_ri_WXCeC</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Miura, Sadahiko</creator><creator>Nishioka, Koichi</creator><creator>Naganuma, Hiroshi</creator><creator>Nguyen T V A</creator><creator>Honjo, Hiroaki</creator><creator>Ikeda, Shoji</creator><creator>Watanabe, Toshinari</creator><creator>Inoue, Hirofumi</creator><creator>Niwa, Masaaki</creator><creator>Tanigawa, Takaho</creator><creator>Noguchi, Yasuo</creator><creator>Yoshizuka, Toru</creator><creator>Yasuhira, Mitsuo</creator><creator>Endoh, Tetsuo</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200101</creationdate><title>10</title><author>Miura, Sadahiko ; Nishioka, Koichi ; Naganuma, Hiroshi ; Nguyen T V A ; Honjo, Hiroaki ; Ikeda, Shoji ; Watanabe, Toshinari ; Inoue, Hirofumi ; Niwa, Masaaki ; Tanigawa, Takaho ; Noguchi, Yasuo ; Yoshizuka, Toru ; Yasuhira, Mitsuo ; Endoh, Tetsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24654350133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Damage</topic><topic>Fokker-Planck equation</topic><topic>Interface stability</topic><topic>Low resistance</topic><topic>Magnetoresistivity</topic><topic>Physical vapor deposition</topic><topic>Pulse duration</topic><topic>Reactive ion etching</topic><topic>Switching</topic><topic>Thermal stability</topic><topic>Tunnel junctions</topic><topic>Tunnel magnetoresistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Sadahiko</creatorcontrib><creatorcontrib>Nishioka, Koichi</creatorcontrib><creatorcontrib>Naganuma, Hiroshi</creatorcontrib><creatorcontrib>Nguyen T V A</creatorcontrib><creatorcontrib>Honjo, Hiroaki</creatorcontrib><creatorcontrib>Ikeda, Shoji</creatorcontrib><creatorcontrib>Watanabe, Toshinari</creatorcontrib><creatorcontrib>Inoue, Hirofumi</creatorcontrib><creatorcontrib>Niwa, Masaaki</creatorcontrib><creatorcontrib>Tanigawa, Takaho</creatorcontrib><creatorcontrib>Noguchi, Yasuo</creatorcontrib><creatorcontrib>Yoshizuka, Toru</creatorcontrib><creatorcontrib>Yasuhira, Mitsuo</creatorcontrib><creatorcontrib>Endoh, Tetsuo</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miura, Sadahiko</au><au>Nishioka, Koichi</au><au>Naganuma, Hiroshi</au><au>Nguyen T V A</au><au>Honjo, Hiroaki</au><au>Ikeda, Shoji</au><au>Watanabe, Toshinari</au><au>Inoue, Hirofumi</au><au>Niwa, Masaaki</au><au>Tanigawa, Takaho</au><au>Noguchi, Yasuo</au><au>Yoshizuka, Toru</au><au>Yasuhira, Mitsuo</au><au>Endoh, Tetsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>10</atitle><jtitle>IEEE transactions on electron devices</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>67</volume><issue>12</issue><spage>5368</spage><pages>5368-</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><abstract>We fabricated a quadruple-interface perpendicular magnetic tunnel junction (MTJ) (Quad-MTJ) down to 33 nm using physical vapor-deposition, reactive ion etching, and damage-control integration process technologies that we developed under a 300-mm process. We demonstrated the greater scalability and higher writing speed of Quad-MTJ compared with double-interface perpendicular MTJ: 1) it has twice the thermal stability factor—1X nm Quad-MTJ can achieve 10 years retention—while maintaining a low resistance-area product and high tunnel magnetoresistance ratio; 2) smaller overdrive ratio of write voltage to obtain a sufficiently low write-error rate; 2) smaller pulsewidth dependence of the switching current; and 4) more than double the write efficiency at 10-ns write operation down to 33-nm MTJ. The effective suppression of the switching current increase for higher write speeds was explained by the spin-transfer-torque model using the Fokker-Planck equation. Our 33-nm Quad-MTJ also achieved excellent endurance (at least 1011) owing to its higher write efficiency and low-damage integration-process technology. It is thus a promising method for low power, high speed, and reliable STT-MRAM with excellent scalability down to the 1X nm node.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TED.2020.3025749</doi></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-01, Vol.67 (12), p.5368
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2465435013
source IEEE Xplore (Online service)
subjects Damage
Fokker-Planck equation
Interface stability
Low resistance
Magnetoresistivity
Physical vapor deposition
Pulse duration
Reactive ion etching
Switching
Thermal stability
Tunnel junctions
Tunnel magnetoresistance
title 10
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=10&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Miura,%20Sadahiko&rft.date=2020-01-01&rft.volume=67&rft.issue=12&rft.spage=5368&rft.pages=5368-&rft.issn=0018-9383&rft.eissn=1557-9646&rft_id=info:doi/10.1109/TED.2020.3025749&rft_dat=%3Cproquest%3E2465435013%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24654350133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465435013&rft_id=info:pmid/&rfr_iscdi=true