Loading…

Process Variation Analysis of Device Performance Using Virtual Fabrication: Methodology Demonstrated on a CMOS 14-nm FinFET Vehicle

A new methodology is demonstrated to assess the impact of fabrication inherent process variability on 14-nm fin field effect transistor (FinFET) device performance. A model of a FinFET device was built using virtual device fabrication and testing. The model was subsequently calibrated on Design of E...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2020-12, Vol.67 (12), p.5374-5380
Main Authors: Vincent, Benjamin, Hathwar, Raghu, Kamon, Mattan, Ervin, Joseph, Schram, Tom, Chiarella, Thomas, Demuynck, Steven, Baudot, Sylvain, Siew, Yong Kong, Kubicek, Stenfan, Litta, Eugenio Dentoni, Chew, SoonAik, Mitard, Jerome
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-63bd15a94e399534d2f63a1b675bceeebc491a697297dae91312f2f9d5aac3673
cites cdi_FETCH-LOGICAL-c291t-63bd15a94e399534d2f63a1b675bceeebc491a697297dae91312f2f9d5aac3673
container_end_page 5380
container_issue 12
container_start_page 5374
container_title IEEE transactions on electron devices
container_volume 67
creator Vincent, Benjamin
Hathwar, Raghu
Kamon, Mattan
Ervin, Joseph
Schram, Tom
Chiarella, Thomas
Demuynck, Steven
Baudot, Sylvain
Siew, Yong Kong
Kubicek, Stenfan
Litta, Eugenio Dentoni
Chew, SoonAik
Mitard, Jerome
description A new methodology is demonstrated to assess the impact of fabrication inherent process variability on 14-nm fin field effect transistor (FinFET) device performance. A model of a FinFET device was built using virtual device fabrication and testing. The model was subsequently calibrated on Design of Experiment corner case data that had been collected on a limited number of processed fab wafers. We then performed 400 virtual experiments comprising seven sources of process variation. Using this virtual fabrication technique, we were able to identify a minimum gate-to-source/drain spacer thickness for a high-temperature post-EPI rapid thermal anneal (RTA) anneal process that avoided device subthreshold slope penalties. The model allowed us to determine the optimal Si recess depth target and process window prior to source/drain epitaxy. We obtained these results by reviewing device performance as a function of statistical process sensitivity and highlighting key process parameters requiring variation control. These experiments would have been impractical to perform in an actual fab, due to the time, cost, and equipment requirements of running 400 fab-based process variation experiments for each process parameter. This methodology can be used to avoid wafer-based testing during early technology development.
doi_str_mv 10.1109/TED.2020.3027528
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2465436663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9222056</ieee_id><sourcerecordid>2465436663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-63bd15a94e399534d2f63a1b675bceeebc491a697297dae91312f2f9d5aac3673</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYjeTbw08bzY76XeCB9qAoFE4LrpdrtQsrvFdjHh7D9uEeJpZjLv9zLzAHjEqIcxki_L8ahHEEE9ikjKSf8KdDDnaSIFE9eggxDuJ5L26S24C2EXR8EY6YCfhXfahADXylvVWtfAQaOqY7ABuhKOzLfVBi6ML52vVRP7VbDNBq6tbw-qghOVe6v_wFc4M-3WFa5ym2Mka9eE1qvWFDC6KjiczT8hZklTw4ltJuMlXJut1ZW5BzelqoJ5uNQuWMXt8D2Zzt8-hoNpoonEbSJoXmCuJDNUSk5ZQUpBFc5FynNtjMk1k1gJmRKZFspITDEpSSkLrpSmIqVd8Hz23Xv3dTChzXbu4OO3ISNMcEaFEDSq0FmlvQvBmzLbe1srf8wwyk5RZzHq7BR1dok6Ik9nxMYz_uWSEIK4oL-tSHpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465436663</pqid></control><display><type>article</type><title>Process Variation Analysis of Device Performance Using Virtual Fabrication: Methodology Demonstrated on a CMOS 14-nm FinFET Vehicle</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Vincent, Benjamin ; Hathwar, Raghu ; Kamon, Mattan ; Ervin, Joseph ; Schram, Tom ; Chiarella, Thomas ; Demuynck, Steven ; Baudot, Sylvain ; Siew, Yong Kong ; Kubicek, Stenfan ; Litta, Eugenio Dentoni ; Chew, SoonAik ; Mitard, Jerome</creator><creatorcontrib>Vincent, Benjamin ; Hathwar, Raghu ; Kamon, Mattan ; Ervin, Joseph ; Schram, Tom ; Chiarella, Thomas ; Demuynck, Steven ; Baudot, Sylvain ; Siew, Yong Kong ; Kubicek, Stenfan ; Litta, Eugenio Dentoni ; Chew, SoonAik ; Mitard, Jerome</creatorcontrib><description>A new methodology is demonstrated to assess the impact of fabrication inherent process variability on 14-nm fin field effect transistor (FinFET) device performance. A model of a FinFET device was built using virtual device fabrication and testing. The model was subsequently calibrated on Design of Experiment corner case data that had been collected on a limited number of processed fab wafers. We then performed 400 virtual experiments comprising seven sources of process variation. Using this virtual fabrication technique, we were able to identify a minimum gate-to-source/drain spacer thickness for a high-temperature post-EPI rapid thermal anneal (RTA) anneal process that avoided device subthreshold slope penalties. The model allowed us to determine the optimal Si recess depth target and process window prior to source/drain epitaxy. We obtained these results by reviewing device performance as a function of statistical process sensitivity and highlighting key process parameters requiring variation control. These experiments would have been impractical to perform in an actual fab, due to the time, cost, and equipment requirements of running 400 fab-based process variation experiments for each process parameter. This methodology can be used to avoid wafer-based testing during early technology development.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3027528</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>14-nm fin field effect transistor (FinFET) ; Annealing ; Calibration ; CMOS ; Design of experiments ; Equipment costs ; Fabrication ; Field effect transistors ; FinFETs ; High temperature ; Logic gates ; Mathematical models ; Methodology ; Model testing ; Parameter sensitivity ; Performance evaluation ; Process parameters ; process variation ; Semiconductor device modeling ; Semiconductor devices ; Semiconductor process modeling ; sensitivity analysis ; simulation</subject><ispartof>IEEE transactions on electron devices, 2020-12, Vol.67 (12), p.5374-5380</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-63bd15a94e399534d2f63a1b675bceeebc491a697297dae91312f2f9d5aac3673</citedby><cites>FETCH-LOGICAL-c291t-63bd15a94e399534d2f63a1b675bceeebc491a697297dae91312f2f9d5aac3673</cites><orcidid>0000-0003-1533-7055 ; 0000-0003-0333-376X ; 0000-0002-7210-2116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9222056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Vincent, Benjamin</creatorcontrib><creatorcontrib>Hathwar, Raghu</creatorcontrib><creatorcontrib>Kamon, Mattan</creatorcontrib><creatorcontrib>Ervin, Joseph</creatorcontrib><creatorcontrib>Schram, Tom</creatorcontrib><creatorcontrib>Chiarella, Thomas</creatorcontrib><creatorcontrib>Demuynck, Steven</creatorcontrib><creatorcontrib>Baudot, Sylvain</creatorcontrib><creatorcontrib>Siew, Yong Kong</creatorcontrib><creatorcontrib>Kubicek, Stenfan</creatorcontrib><creatorcontrib>Litta, Eugenio Dentoni</creatorcontrib><creatorcontrib>Chew, SoonAik</creatorcontrib><creatorcontrib>Mitard, Jerome</creatorcontrib><title>Process Variation Analysis of Device Performance Using Virtual Fabrication: Methodology Demonstrated on a CMOS 14-nm FinFET Vehicle</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A new methodology is demonstrated to assess the impact of fabrication inherent process variability on 14-nm fin field effect transistor (FinFET) device performance. A model of a FinFET device was built using virtual device fabrication and testing. The model was subsequently calibrated on Design of Experiment corner case data that had been collected on a limited number of processed fab wafers. We then performed 400 virtual experiments comprising seven sources of process variation. Using this virtual fabrication technique, we were able to identify a minimum gate-to-source/drain spacer thickness for a high-temperature post-EPI rapid thermal anneal (RTA) anneal process that avoided device subthreshold slope penalties. The model allowed us to determine the optimal Si recess depth target and process window prior to source/drain epitaxy. We obtained these results by reviewing device performance as a function of statistical process sensitivity and highlighting key process parameters requiring variation control. These experiments would have been impractical to perform in an actual fab, due to the time, cost, and equipment requirements of running 400 fab-based process variation experiments for each process parameter. This methodology can be used to avoid wafer-based testing during early technology development.</description><subject>14-nm fin field effect transistor (FinFET)</subject><subject>Annealing</subject><subject>Calibration</subject><subject>CMOS</subject><subject>Design of experiments</subject><subject>Equipment costs</subject><subject>Fabrication</subject><subject>Field effect transistors</subject><subject>FinFETs</subject><subject>High temperature</subject><subject>Logic gates</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Model testing</subject><subject>Parameter sensitivity</subject><subject>Performance evaluation</subject><subject>Process parameters</subject><subject>process variation</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Semiconductor process modeling</subject><subject>sensitivity analysis</subject><subject>simulation</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PAjEQxRujiYjeTbw08bzY76XeCB9qAoFE4LrpdrtQsrvFdjHh7D9uEeJpZjLv9zLzAHjEqIcxki_L8ahHEEE9ikjKSf8KdDDnaSIFE9eggxDuJ5L26S24C2EXR8EY6YCfhXfahADXylvVWtfAQaOqY7ABuhKOzLfVBi6ML52vVRP7VbDNBq6tbw-qghOVe6v_wFc4M-3WFa5ym2Mka9eE1qvWFDC6KjiczT8hZklTw4ltJuMlXJut1ZW5BzelqoJ5uNQuWMXt8D2Zzt8-hoNpoonEbSJoXmCuJDNUSk5ZQUpBFc5FynNtjMk1k1gJmRKZFspITDEpSSkLrpSmIqVd8Hz23Xv3dTChzXbu4OO3ISNMcEaFEDSq0FmlvQvBmzLbe1srf8wwyk5RZzHq7BR1dok6Ik9nxMYz_uWSEIK4oL-tSHpM</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Vincent, Benjamin</creator><creator>Hathwar, Raghu</creator><creator>Kamon, Mattan</creator><creator>Ervin, Joseph</creator><creator>Schram, Tom</creator><creator>Chiarella, Thomas</creator><creator>Demuynck, Steven</creator><creator>Baudot, Sylvain</creator><creator>Siew, Yong Kong</creator><creator>Kubicek, Stenfan</creator><creator>Litta, Eugenio Dentoni</creator><creator>Chew, SoonAik</creator><creator>Mitard, Jerome</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1533-7055</orcidid><orcidid>https://orcid.org/0000-0003-0333-376X</orcidid><orcidid>https://orcid.org/0000-0002-7210-2116</orcidid></search><sort><creationdate>20201201</creationdate><title>Process Variation Analysis of Device Performance Using Virtual Fabrication: Methodology Demonstrated on a CMOS 14-nm FinFET Vehicle</title><author>Vincent, Benjamin ; Hathwar, Raghu ; Kamon, Mattan ; Ervin, Joseph ; Schram, Tom ; Chiarella, Thomas ; Demuynck, Steven ; Baudot, Sylvain ; Siew, Yong Kong ; Kubicek, Stenfan ; Litta, Eugenio Dentoni ; Chew, SoonAik ; Mitard, Jerome</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-63bd15a94e399534d2f63a1b675bceeebc491a697297dae91312f2f9d5aac3673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14-nm fin field effect transistor (FinFET)</topic><topic>Annealing</topic><topic>Calibration</topic><topic>CMOS</topic><topic>Design of experiments</topic><topic>Equipment costs</topic><topic>Fabrication</topic><topic>Field effect transistors</topic><topic>FinFETs</topic><topic>High temperature</topic><topic>Logic gates</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Model testing</topic><topic>Parameter sensitivity</topic><topic>Performance evaluation</topic><topic>Process parameters</topic><topic>process variation</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Semiconductor process modeling</topic><topic>sensitivity analysis</topic><topic>simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vincent, Benjamin</creatorcontrib><creatorcontrib>Hathwar, Raghu</creatorcontrib><creatorcontrib>Kamon, Mattan</creatorcontrib><creatorcontrib>Ervin, Joseph</creatorcontrib><creatorcontrib>Schram, Tom</creatorcontrib><creatorcontrib>Chiarella, Thomas</creatorcontrib><creatorcontrib>Demuynck, Steven</creatorcontrib><creatorcontrib>Baudot, Sylvain</creatorcontrib><creatorcontrib>Siew, Yong Kong</creatorcontrib><creatorcontrib>Kubicek, Stenfan</creatorcontrib><creatorcontrib>Litta, Eugenio Dentoni</creatorcontrib><creatorcontrib>Chew, SoonAik</creatorcontrib><creatorcontrib>Mitard, Jerome</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vincent, Benjamin</au><au>Hathwar, Raghu</au><au>Kamon, Mattan</au><au>Ervin, Joseph</au><au>Schram, Tom</au><au>Chiarella, Thomas</au><au>Demuynck, Steven</au><au>Baudot, Sylvain</au><au>Siew, Yong Kong</au><au>Kubicek, Stenfan</au><au>Litta, Eugenio Dentoni</au><au>Chew, SoonAik</au><au>Mitard, Jerome</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Variation Analysis of Device Performance Using Virtual Fabrication: Methodology Demonstrated on a CMOS 14-nm FinFET Vehicle</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>67</volume><issue>12</issue><spage>5374</spage><epage>5380</epage><pages>5374-5380</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A new methodology is demonstrated to assess the impact of fabrication inherent process variability on 14-nm fin field effect transistor (FinFET) device performance. A model of a FinFET device was built using virtual device fabrication and testing. The model was subsequently calibrated on Design of Experiment corner case data that had been collected on a limited number of processed fab wafers. We then performed 400 virtual experiments comprising seven sources of process variation. Using this virtual fabrication technique, we were able to identify a minimum gate-to-source/drain spacer thickness for a high-temperature post-EPI rapid thermal anneal (RTA) anneal process that avoided device subthreshold slope penalties. The model allowed us to determine the optimal Si recess depth target and process window prior to source/drain epitaxy. We obtained these results by reviewing device performance as a function of statistical process sensitivity and highlighting key process parameters requiring variation control. These experiments would have been impractical to perform in an actual fab, due to the time, cost, and equipment requirements of running 400 fab-based process variation experiments for each process parameter. This methodology can be used to avoid wafer-based testing during early technology development.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.3027528</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1533-7055</orcidid><orcidid>https://orcid.org/0000-0003-0333-376X</orcidid><orcidid>https://orcid.org/0000-0002-7210-2116</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-12, Vol.67 (12), p.5374-5380
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2465436663
source IEEE Electronic Library (IEL) Journals
subjects 14-nm fin field effect transistor (FinFET)
Annealing
Calibration
CMOS
Design of experiments
Equipment costs
Fabrication
Field effect transistors
FinFETs
High temperature
Logic gates
Mathematical models
Methodology
Model testing
Parameter sensitivity
Performance evaluation
Process parameters
process variation
Semiconductor device modeling
Semiconductor devices
Semiconductor process modeling
sensitivity analysis
simulation
title Process Variation Analysis of Device Performance Using Virtual Fabrication: Methodology Demonstrated on a CMOS 14-nm FinFET Vehicle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Variation%20Analysis%20of%20Device%20Performance%20Using%20Virtual%20Fabrication:%20Methodology%20Demonstrated%20on%20a%20CMOS%2014-nm%20FinFET%20Vehicle&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Vincent,%20Benjamin&rft.date=2020-12-01&rft.volume=67&rft.issue=12&rft.spage=5374&rft.epage=5380&rft.pages=5374-5380&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.3027528&rft_dat=%3Cproquest_ieee_%3E2465436663%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-63bd15a94e399534d2f63a1b675bceeebc491a697297dae91312f2f9d5aac3673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465436663&rft_id=info:pmid/&rft_ieee_id=9222056&rfr_iscdi=true