Loading…
Reconfigurable 2T2R ReRAM Architecture for Versatile Data Storage and Computing In-Memory
Nonvolatile memory (NVM)-based computing in-memory (CIM) is a promising solution to data-intensive applications. This work proposes a 2T2R resistive random access memory (ReRAM) architecture that supports three types of CIM operations: 1) ternary content addressable memory (TCAM); 2) logic in-memory...
Saved in:
Published in: | IEEE transactions on very large scale integration (VLSI) systems 2020-12, Vol.28 (12), p.2636-2649 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nonvolatile memory (NVM)-based computing in-memory (CIM) is a promising solution to data-intensive applications. This work proposes a 2T2R resistive random access memory (ReRAM) architecture that supports three types of CIM operations: 1) ternary content addressable memory (TCAM); 2) logic in-memory (LiM) primitives and arithmetic blocks such as full adder (FA) and full subtractor; and 3) in-memory dot-product for neural networks. The proposed architecture allows the NVM operations in both 2T2R and conventional 1T1R configurations. The proposed LiM full adder (LiM-FA) improves the delay, the static power, and the dynamic power by 3.2\times , 1.2\times , and 1.6\times , respectively, compared with state-of-the-art LiM-FAs. Furthermore, based on different optimization techniques and robustness analysis, a lower precharge voltage is set for each mode. This reduces the TCAM search energy and 1T1R ReRAM access energy by 1.6\times and 1.14\times , respectively, compared with the case without optimizations. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2020.3028848 |