Loading…

Recent trends in multicue based visual tracking: A review

•A comprehensive survey of single/multimodal multicue object tracking.•Review of traditional multicue methods and categorized into four different category.•Review of recent deep learning based multicue methods from two different perspective.•Summarize various single/multimodal benchmark for multicue...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2020-12, Vol.162, p.113711, Article 113711
Main Authors: Kumar, Ashish, Walia, Gurjit Singh, Sharma, Kapil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-f26962f87108c6f8e41102cda606254b698473f93735c54ae32cf4b43b1b8c653
cites cdi_FETCH-LOGICAL-c328t-f26962f87108c6f8e41102cda606254b698473f93735c54ae32cf4b43b1b8c653
container_end_page
container_issue
container_start_page 113711
container_title Expert systems with applications
container_volume 162
creator Kumar, Ashish
Walia, Gurjit Singh
Sharma, Kapil
description •A comprehensive survey of single/multimodal multicue object tracking.•Review of traditional multicue methods and categorized into four different category.•Review of recent deep learning based multicue methods from two different perspective.•Summarize various single/multimodal benchmark for multicue object tracking.•Experimental evaluation of state-of-the-arts on various benchmark datasets. In the recent years, multicue visual tracking frameworks have been preferred over single cue visual tracking approaches to address critical environmental challenges. In literature, it has been well accepted that combining multiple complementary cues extracted from single sensor or multiple sensors, deep features and features extracted from different layers of deep learning architecture enhance tracking performance and accuracy. In this paper, we have categorized the multi-cue object tracking work based on the exploited appearance model into traditional architecture and deep learning based trackers. The categorized work have been tabulated to provide detailed overview of the representative work and to list out the new trends in the domain. Also, we have briefly analyzed the various tracking benchmark and tabulated their substantial parameters. Our review work analyze the recent trends in the field of object tracking alongwith the latest tracking benchmark to indicate the future directions to the researchers. In addition, we have experimentally evaluated the state-of-the-arts on OTB-15, UAV123, VOT2017 and LaSOT datasets under various tracking challenges.
doi_str_mv 10.1016/j.eswa.2020.113711
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465481027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417420305352</els_id><sourcerecordid>2465481027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-f26962f87108c6f8e41102cda606254b698473f93735c54ae32cf4b43b1b8c653</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA89Z8bZIVL6X4BQVB9Byy2YlkbXdrstvivzdlPXsamHnfd2YehK4pWVBC5W27gHSwC0ZYblCuKD1BM6oVL6Sq-CmakapUhaBKnKOLlFpCqCJEzVD1Bg66AQ8Ruibh0OHtuBmCGwHXNkGD9yGNdpPn1n2F7vMOL3GEfYDDJTrzdpPg6q_O0cfjw_vquVi_Pr2sluvCcaaHwjNZSea1okQ76TUISglzjZVEslLUstJCcV9xxUtXCgucOS9qwWtaZ0PJ5-hmyt3F_nuENJi2H2OXVxomZCl0jlNZxSaVi31KEbzZxbC18cdQYo6ITGuOiMwRkZkQZdP9ZIJ8f_4pmuQCdA6aEMENpunDf_Zfo9htCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465481027</pqid></control><display><type>article</type><title>Recent trends in multicue based visual tracking: A review</title><source>ScienceDirect Journals</source><creator>Kumar, Ashish ; Walia, Gurjit Singh ; Sharma, Kapil</creator><creatorcontrib>Kumar, Ashish ; Walia, Gurjit Singh ; Sharma, Kapil</creatorcontrib><description>•A comprehensive survey of single/multimodal multicue object tracking.•Review of traditional multicue methods and categorized into four different category.•Review of recent deep learning based multicue methods from two different perspective.•Summarize various single/multimodal benchmark for multicue object tracking.•Experimental evaluation of state-of-the-arts on various benchmark datasets. In the recent years, multicue visual tracking frameworks have been preferred over single cue visual tracking approaches to address critical environmental challenges. In literature, it has been well accepted that combining multiple complementary cues extracted from single sensor or multiple sensors, deep features and features extracted from different layers of deep learning architecture enhance tracking performance and accuracy. In this paper, we have categorized the multi-cue object tracking work based on the exploited appearance model into traditional architecture and deep learning based trackers. The categorized work have been tabulated to provide detailed overview of the representative work and to list out the new trends in the domain. Also, we have briefly analyzed the various tracking benchmark and tabulated their substantial parameters. Our review work analyze the recent trends in the field of object tracking alongwith the latest tracking benchmark to indicate the future directions to the researchers. In addition, we have experimentally evaluated the state-of-the-arts on OTB-15, UAV123, VOT2017 and LaSOT datasets under various tracking challenges.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2020.113711</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Benchmarks ; Computer vision ; Deep learning ; Feature extraction ; Multicue ; Optical tracking ; Tracking evaluation ; Trends ; Visual tracking</subject><ispartof>Expert systems with applications, 2020-12, Vol.162, p.113711, Article 113711</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 30, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-f26962f87108c6f8e41102cda606254b698473f93735c54ae32cf4b43b1b8c653</citedby><cites>FETCH-LOGICAL-c328t-f26962f87108c6f8e41102cda606254b698473f93735c54ae32cf4b43b1b8c653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kumar, Ashish</creatorcontrib><creatorcontrib>Walia, Gurjit Singh</creatorcontrib><creatorcontrib>Sharma, Kapil</creatorcontrib><title>Recent trends in multicue based visual tracking: A review</title><title>Expert systems with applications</title><description>•A comprehensive survey of single/multimodal multicue object tracking.•Review of traditional multicue methods and categorized into four different category.•Review of recent deep learning based multicue methods from two different perspective.•Summarize various single/multimodal benchmark for multicue object tracking.•Experimental evaluation of state-of-the-arts on various benchmark datasets. In the recent years, multicue visual tracking frameworks have been preferred over single cue visual tracking approaches to address critical environmental challenges. In literature, it has been well accepted that combining multiple complementary cues extracted from single sensor or multiple sensors, deep features and features extracted from different layers of deep learning architecture enhance tracking performance and accuracy. In this paper, we have categorized the multi-cue object tracking work based on the exploited appearance model into traditional architecture and deep learning based trackers. The categorized work have been tabulated to provide detailed overview of the representative work and to list out the new trends in the domain. Also, we have briefly analyzed the various tracking benchmark and tabulated their substantial parameters. Our review work analyze the recent trends in the field of object tracking alongwith the latest tracking benchmark to indicate the future directions to the researchers. In addition, we have experimentally evaluated the state-of-the-arts on OTB-15, UAV123, VOT2017 and LaSOT datasets under various tracking challenges.</description><subject>Benchmarks</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Multicue</subject><subject>Optical tracking</subject><subject>Tracking evaluation</subject><subject>Trends</subject><subject>Visual tracking</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA89Z8bZIVL6X4BQVB9Byy2YlkbXdrstvivzdlPXsamHnfd2YehK4pWVBC5W27gHSwC0ZYblCuKD1BM6oVL6Sq-CmakapUhaBKnKOLlFpCqCJEzVD1Bg66AQ8Ruibh0OHtuBmCGwHXNkGD9yGNdpPn1n2F7vMOL3GEfYDDJTrzdpPg6q_O0cfjw_vquVi_Pr2sluvCcaaHwjNZSea1okQ76TUISglzjZVEslLUstJCcV9xxUtXCgucOS9qwWtaZ0PJ5-hmyt3F_nuENJi2H2OXVxomZCl0jlNZxSaVi31KEbzZxbC18cdQYo6ITGuOiMwRkZkQZdP9ZIJ8f_4pmuQCdA6aEMENpunDf_Zfo9htCA</recordid><startdate>20201230</startdate><enddate>20201230</enddate><creator>Kumar, Ashish</creator><creator>Walia, Gurjit Singh</creator><creator>Sharma, Kapil</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201230</creationdate><title>Recent trends in multicue based visual tracking: A review</title><author>Kumar, Ashish ; Walia, Gurjit Singh ; Sharma, Kapil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-f26962f87108c6f8e41102cda606254b698473f93735c54ae32cf4b43b1b8c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benchmarks</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Multicue</topic><topic>Optical tracking</topic><topic>Tracking evaluation</topic><topic>Trends</topic><topic>Visual tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Ashish</creatorcontrib><creatorcontrib>Walia, Gurjit Singh</creatorcontrib><creatorcontrib>Sharma, Kapil</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Ashish</au><au>Walia, Gurjit Singh</au><au>Sharma, Kapil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent trends in multicue based visual tracking: A review</atitle><jtitle>Expert systems with applications</jtitle><date>2020-12-30</date><risdate>2020</risdate><volume>162</volume><spage>113711</spage><pages>113711-</pages><artnum>113711</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A comprehensive survey of single/multimodal multicue object tracking.•Review of traditional multicue methods and categorized into four different category.•Review of recent deep learning based multicue methods from two different perspective.•Summarize various single/multimodal benchmark for multicue object tracking.•Experimental evaluation of state-of-the-arts on various benchmark datasets. In the recent years, multicue visual tracking frameworks have been preferred over single cue visual tracking approaches to address critical environmental challenges. In literature, it has been well accepted that combining multiple complementary cues extracted from single sensor or multiple sensors, deep features and features extracted from different layers of deep learning architecture enhance tracking performance and accuracy. In this paper, we have categorized the multi-cue object tracking work based on the exploited appearance model into traditional architecture and deep learning based trackers. The categorized work have been tabulated to provide detailed overview of the representative work and to list out the new trends in the domain. Also, we have briefly analyzed the various tracking benchmark and tabulated their substantial parameters. Our review work analyze the recent trends in the field of object tracking alongwith the latest tracking benchmark to indicate the future directions to the researchers. In addition, we have experimentally evaluated the state-of-the-arts on OTB-15, UAV123, VOT2017 and LaSOT datasets under various tracking challenges.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2020.113711</doi></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2020-12, Vol.162, p.113711, Article 113711
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2465481027
source ScienceDirect Journals
subjects Benchmarks
Computer vision
Deep learning
Feature extraction
Multicue
Optical tracking
Tracking evaluation
Trends
Visual tracking
title Recent trends in multicue based visual tracking: A review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20trends%20in%20multicue%20based%20visual%20tracking:%20A%20review&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Kumar,%20Ashish&rft.date=2020-12-30&rft.volume=162&rft.spage=113711&rft.pages=113711-&rft.artnum=113711&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2020.113711&rft_dat=%3Cproquest_cross%3E2465481027%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-f26962f87108c6f8e41102cda606254b698473f93735c54ae32cf4b43b1b8c653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465481027&rft_id=info:pmid/&rfr_iscdi=true