Loading…

Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13 wt% TiO2 Coatings

The study aims to elaborate a neural model and algorithm for optimizing hardness and porosity of coatings and thus ensure that they have superior cavitation erosion resistance. Al2O3-13 wt% TiO2 ceramic coatings were deposited onto 316L stainless steel by atmospheric plasma spray (ASP). The coatings...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2020-12, Vol.8 (12), p.1544
Main Authors: Szala, Mirosław, Łatka, Leszek, Awtoniuk, Michał, Winnicki, Marcin, Michalak, Monika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study aims to elaborate a neural model and algorithm for optimizing hardness and porosity of coatings and thus ensure that they have superior cavitation erosion resistance. Al2O3-13 wt% TiO2 ceramic coatings were deposited onto 316L stainless steel by atmospheric plasma spray (ASP). The coatings were prepared with different values of two spray process parameters: the stand-off distance and torch velocity. Microstructure, porosity and microhardness of the coatings were examined. Cavitation erosion tests were conducted in compliance with the ASTM G32 standard. Artificial neural networks (ANN) were employed to elaborate the model, and the multi-objectives genetic algorithm (MOGA) was used to optimize both properties and cavitation erosion resistance of the coatings. Results were analyzed with MATLAB software by Neural Network Toolbox and Global Optimization Toolbox. The fusion of artificial intelligence methods (ANN + MOGA) is essential for future selection of thermal spray process parameters, especially for the design of ceramic coatings with specified functional properties. Selection of these parameters is a multicriteria decision problem. The proposed method made it possible to find a Pareto front, i.e., trade-offs between several conflicting objectives—maximizing the hardness and cavitation erosion resistance of Al2O3-13 wt% TiO2 coatings and, at the same time, minimizing their porosity.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr8121544