Loading…

Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller

Significant nonlinearity of electronic hydraulic brake (EHB) systems often leads to complex hydraulic force control responses. This paper designs a motor-driven EHB system and analyzes nonlinear friction induced by the deceleration mechanism. To compensate this friction, a flutter signal is added to...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of computational fluid mechanics 2020-01, Vol.14 (1), p.1228-1236
Main Authors: Chen, Qiping, Shao, Hao, Liu, Yu, Xiao, Yuan, Wang, Ning, Shu, Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3
cites cdi_FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3
container_end_page 1236
container_issue 1
container_start_page 1228
container_title Engineering applications of computational fluid mechanics
container_volume 14
creator Chen, Qiping
Shao, Hao
Liu, Yu
Xiao, Yuan
Wang, Ning
Shu, Qiang
description Significant nonlinearity of electronic hydraulic brake (EHB) systems often leads to complex hydraulic force control responses. This paper designs a motor-driven EHB system and analyzes nonlinear friction induced by the deceleration mechanism. To compensate this friction, a flutter signal is added to the controller input. In addition, this paper designs a fuzzy-PI (Proportional and Integral) controller for the cylinder hydraulic pressure of the EHB system based on the opening and closing characteristics of a solenoid valve. Response curves of cylinder hydraulic pressure are obtained under three different input signals: step, triangular, and sinusoidal. The co-simulation model is established by AMEsim™ and Simulink® ansofts. The study results indicate that the proposed hydraulic-force-following control method of the EHB system can follow different input signals well. A step response test and a sine-wave-following test are carried out, which correspond to the EHB response in the case of driver's emergency braking and frequent braking, respectively. Stable and rapid pressure build-up is obtained under different step target hydraulic pressures. Therefore, the hydraulic-force-following control method of the EHB system based on a fuzzy-PI controller can satisfy the EHB system accuracy requirements for an electric vehicle, which is a certain valuable for the automobile industry.
doi_str_mv 10.1080/19942060.2020.1816495
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2466209957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2f0e8d5a89b546b7afc93f51e1d6df1e</doaj_id><sourcerecordid>2466209957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxU1poSHJRwgIenYqyZJs31pC2wQCuSTQm9Cf0Uap1tqObIJz7CevNrvpsSdpnt78RsNrmgtGLxkd6Gc2joJTRS855VUamBKjfNecVL1vKe1-vn-9i3Zv-ticlxItlbTvGOvFSfPnevVolhRdu0MoZUFoQ04pP8dpQ1yeZsyJ5EDMRCCBq-UUHXl86yIWzS8gZS0zbIk1BTzJEzEkLC8vK9lh3mWcY55MqghP4jTDBmtxRCfAs-ZDMKnA-fE8bR6-f7u_um5v737cXH29bZ2QbG5NUAH4wDru7ABM2MFLE2x9E6Cc7KVkrnNUSjnSngopRi84QKespUxx3502Nweuz-ZJ7zBuDa46m6hfhYwbbepXXQLNA4U9fhitFMr2JrixC5IB88oHBpX16cCqC_5eoMz6KS9YlyyaC6U4HUfZV5c8uBzmUhDCv6mM6n16-i09vU9PH9OrfV8OfXEKGbfmOWPyejZryhjQTC4W3f0f8RebfKPC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466209957</pqid></control><display><type>article</type><title>Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller</title><source>Taylor &amp; Francis Open Access</source><creator>Chen, Qiping ; Shao, Hao ; Liu, Yu ; Xiao, Yuan ; Wang, Ning ; Shu, Qiang</creator><creatorcontrib>Chen, Qiping ; Shao, Hao ; Liu, Yu ; Xiao, Yuan ; Wang, Ning ; Shu, Qiang</creatorcontrib><description>Significant nonlinearity of electronic hydraulic brake (EHB) systems often leads to complex hydraulic force control responses. This paper designs a motor-driven EHB system and analyzes nonlinear friction induced by the deceleration mechanism. To compensate this friction, a flutter signal is added to the controller input. In addition, this paper designs a fuzzy-PI (Proportional and Integral) controller for the cylinder hydraulic pressure of the EHB system based on the opening and closing characteristics of a solenoid valve. Response curves of cylinder hydraulic pressure are obtained under three different input signals: step, triangular, and sinusoidal. The co-simulation model is established by AMEsim™ and Simulink® ansofts. The study results indicate that the proposed hydraulic-force-following control method of the EHB system can follow different input signals well. A step response test and a sine-wave-following test are carried out, which correspond to the EHB response in the case of driver's emergency braking and frequent braking, respectively. Stable and rapid pressure build-up is obtained under different step target hydraulic pressures. Therefore, the hydraulic-force-following control method of the EHB system based on a fuzzy-PI controller can satisfy the EHB system accuracy requirements for an electric vehicle, which is a certain valuable for the automobile industry.</description><identifier>ISSN: 1994-2060</identifier><identifier>EISSN: 1997-003X</identifier><identifier>DOI: 10.1080/19942060.2020.1816495</identifier><language>eng</language><publisher>Hong Kong: Taylor &amp; Francis</publisher><subject>Brakes ; Braking ; Control methods ; Control systems ; Controllers ; Cylinders ; Deceleration ; EHB system ; electric vehicle ; Electric vehicles ; Emergency response ; Flutter ; Fuzzy control ; fuzzy PI ; Hydraulic pressure ; hydraulic pressure control ; Hydraulics ; Integrals ; Nonlinear analysis ; Nonlinearity ; Sine waves ; Solenoid valves ; Step response</subject><ispartof>Engineering applications of computational fluid mechanics, 2020-01, Vol.14 (1), p.1228-1236</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3</citedby><cites>FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19942060.2020.1816495$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19942060.2020.1816495$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Chen, Qiping</creatorcontrib><creatorcontrib>Shao, Hao</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Xiao, Yuan</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Shu, Qiang</creatorcontrib><title>Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller</title><title>Engineering applications of computational fluid mechanics</title><description>Significant nonlinearity of electronic hydraulic brake (EHB) systems often leads to complex hydraulic force control responses. This paper designs a motor-driven EHB system and analyzes nonlinear friction induced by the deceleration mechanism. To compensate this friction, a flutter signal is added to the controller input. In addition, this paper designs a fuzzy-PI (Proportional and Integral) controller for the cylinder hydraulic pressure of the EHB system based on the opening and closing characteristics of a solenoid valve. Response curves of cylinder hydraulic pressure are obtained under three different input signals: step, triangular, and sinusoidal. The co-simulation model is established by AMEsim™ and Simulink® ansofts. The study results indicate that the proposed hydraulic-force-following control method of the EHB system can follow different input signals well. A step response test and a sine-wave-following test are carried out, which correspond to the EHB response in the case of driver's emergency braking and frequent braking, respectively. Stable and rapid pressure build-up is obtained under different step target hydraulic pressures. Therefore, the hydraulic-force-following control method of the EHB system based on a fuzzy-PI controller can satisfy the EHB system accuracy requirements for an electric vehicle, which is a certain valuable for the automobile industry.</description><subject>Brakes</subject><subject>Braking</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Cylinders</subject><subject>Deceleration</subject><subject>EHB system</subject><subject>electric vehicle</subject><subject>Electric vehicles</subject><subject>Emergency response</subject><subject>Flutter</subject><subject>Fuzzy control</subject><subject>fuzzy PI</subject><subject>Hydraulic pressure</subject><subject>hydraulic pressure control</subject><subject>Hydraulics</subject><subject>Integrals</subject><subject>Nonlinear analysis</subject><subject>Nonlinearity</subject><subject>Sine waves</subject><subject>Solenoid valves</subject><subject>Step response</subject><issn>1994-2060</issn><issn>1997-003X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9r3DAQxU1poSHJRwgIenYqyZJs31pC2wQCuSTQm9Cf0Uap1tqObIJz7CevNrvpsSdpnt78RsNrmgtGLxkd6Gc2joJTRS855VUamBKjfNecVL1vKe1-vn-9i3Zv-ticlxItlbTvGOvFSfPnevVolhRdu0MoZUFoQ04pP8dpQ1yeZsyJ5EDMRCCBq-UUHXl86yIWzS8gZS0zbIk1BTzJEzEkLC8vK9lh3mWcY55MqghP4jTDBmtxRCfAs-ZDMKnA-fE8bR6-f7u_um5v737cXH29bZ2QbG5NUAH4wDru7ABM2MFLE2x9E6Cc7KVkrnNUSjnSngopRi84QKespUxx3502Nweuz-ZJ7zBuDa46m6hfhYwbbepXXQLNA4U9fhitFMr2JrixC5IB88oHBpX16cCqC_5eoMz6KS9YlyyaC6U4HUfZV5c8uBzmUhDCv6mM6n16-i09vU9PH9OrfV8OfXEKGbfmOWPyejZryhjQTC4W3f0f8RebfKPC</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Chen, Qiping</creator><creator>Shao, Hao</creator><creator>Liu, Yu</creator><creator>Xiao, Yuan</creator><creator>Wang, Ning</creator><creator>Shu, Qiang</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KR7</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20200101</creationdate><title>Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller</title><author>Chen, Qiping ; Shao, Hao ; Liu, Yu ; Xiao, Yuan ; Wang, Ning ; Shu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brakes</topic><topic>Braking</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Cylinders</topic><topic>Deceleration</topic><topic>EHB system</topic><topic>electric vehicle</topic><topic>Electric vehicles</topic><topic>Emergency response</topic><topic>Flutter</topic><topic>Fuzzy control</topic><topic>fuzzy PI</topic><topic>Hydraulic pressure</topic><topic>hydraulic pressure control</topic><topic>Hydraulics</topic><topic>Integrals</topic><topic>Nonlinear analysis</topic><topic>Nonlinearity</topic><topic>Sine waves</topic><topic>Solenoid valves</topic><topic>Step response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiping</creatorcontrib><creatorcontrib>Shao, Hao</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Xiao, Yuan</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Shu, Qiang</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Civil Engineering Abstracts</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Engineering applications of computational fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiping</au><au>Shao, Hao</au><au>Liu, Yu</au><au>Xiao, Yuan</au><au>Wang, Ning</au><au>Shu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller</atitle><jtitle>Engineering applications of computational fluid mechanics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>1228</spage><epage>1236</epage><pages>1228-1236</pages><issn>1994-2060</issn><eissn>1997-003X</eissn><abstract>Significant nonlinearity of electronic hydraulic brake (EHB) systems often leads to complex hydraulic force control responses. This paper designs a motor-driven EHB system and analyzes nonlinear friction induced by the deceleration mechanism. To compensate this friction, a flutter signal is added to the controller input. In addition, this paper designs a fuzzy-PI (Proportional and Integral) controller for the cylinder hydraulic pressure of the EHB system based on the opening and closing characteristics of a solenoid valve. Response curves of cylinder hydraulic pressure are obtained under three different input signals: step, triangular, and sinusoidal. The co-simulation model is established by AMEsim™ and Simulink® ansofts. The study results indicate that the proposed hydraulic-force-following control method of the EHB system can follow different input signals well. A step response test and a sine-wave-following test are carried out, which correspond to the EHB response in the case of driver's emergency braking and frequent braking, respectively. Stable and rapid pressure build-up is obtained under different step target hydraulic pressures. Therefore, the hydraulic-force-following control method of the EHB system based on a fuzzy-PI controller can satisfy the EHB system accuracy requirements for an electric vehicle, which is a certain valuable for the automobile industry.</abstract><cop>Hong Kong</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/19942060.2020.1816495</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-2060
ispartof Engineering applications of computational fluid mechanics, 2020-01, Vol.14 (1), p.1228-1236
issn 1994-2060
1997-003X
language eng
recordid cdi_proquest_journals_2466209957
source Taylor & Francis Open Access
subjects Brakes
Braking
Control methods
Control systems
Controllers
Cylinders
Deceleration
EHB system
electric vehicle
Electric vehicles
Emergency response
Flutter
Fuzzy control
fuzzy PI
Hydraulic pressure
hydraulic pressure control
Hydraulics
Integrals
Nonlinear analysis
Nonlinearity
Sine waves
Solenoid valves
Step response
title Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydraulic-pressure-following%20control%20of%20an%20electronic%20hydraulic%20brake%20system%20based%20on%20a%20fuzzy%20proportional%20and%20integral%20controller&rft.jtitle=Engineering%20applications%20of%20computational%20fluid%20mechanics&rft.au=Chen,%20Qiping&rft.date=2020-01-01&rft.volume=14&rft.issue=1&rft.spage=1228&rft.epage=1236&rft.pages=1228-1236&rft.issn=1994-2060&rft.eissn=1997-003X&rft_id=info:doi/10.1080/19942060.2020.1816495&rft_dat=%3Cproquest_doaj_%3E2466209957%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466209957&rft_id=info:pmid/&rfr_iscdi=true