Loading…
Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller
Significant nonlinearity of electronic hydraulic brake (EHB) systems often leads to complex hydraulic force control responses. This paper designs a motor-driven EHB system and analyzes nonlinear friction induced by the deceleration mechanism. To compensate this friction, a flutter signal is added to...
Saved in:
Published in: | Engineering applications of computational fluid mechanics 2020-01, Vol.14 (1), p.1228-1236 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3 |
container_end_page | 1236 |
container_issue | 1 |
container_start_page | 1228 |
container_title | Engineering applications of computational fluid mechanics |
container_volume | 14 |
creator | Chen, Qiping Shao, Hao Liu, Yu Xiao, Yuan Wang, Ning Shu, Qiang |
description | Significant nonlinearity of electronic hydraulic brake (EHB) systems often leads to complex hydraulic force control responses. This paper designs a motor-driven EHB system and analyzes nonlinear friction induced by the deceleration mechanism. To compensate this friction, a flutter signal is added to the controller input. In addition, this paper designs a fuzzy-PI (Proportional and Integral) controller for the cylinder hydraulic pressure of the EHB system based on the opening and closing characteristics of a solenoid valve. Response curves of cylinder hydraulic pressure are obtained under three different input signals: step, triangular, and sinusoidal. The co-simulation model is established by AMEsim™ and Simulink® ansofts. The study results indicate that the proposed hydraulic-force-following control method of the EHB system can follow different input signals well. A step response test and a sine-wave-following test are carried out, which correspond to the EHB response in the case of driver's emergency braking and frequent braking, respectively. Stable and rapid pressure build-up is obtained under different step target hydraulic pressures. Therefore, the hydraulic-force-following control method of the EHB system based on a fuzzy-PI controller can satisfy the EHB system accuracy requirements for an electric vehicle, which is a certain valuable for the automobile industry. |
doi_str_mv | 10.1080/19942060.2020.1816495 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2466209957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2f0e8d5a89b546b7afc93f51e1d6df1e</doaj_id><sourcerecordid>2466209957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxU1poSHJRwgIenYqyZJs31pC2wQCuSTQm9Cf0Uap1tqObIJz7CevNrvpsSdpnt78RsNrmgtGLxkd6Gc2joJTRS855VUamBKjfNecVL1vKe1-vn-9i3Zv-ticlxItlbTvGOvFSfPnevVolhRdu0MoZUFoQ04pP8dpQ1yeZsyJ5EDMRCCBq-UUHXl86yIWzS8gZS0zbIk1BTzJEzEkLC8vK9lh3mWcY55MqghP4jTDBmtxRCfAs-ZDMKnA-fE8bR6-f7u_um5v737cXH29bZ2QbG5NUAH4wDru7ABM2MFLE2x9E6Cc7KVkrnNUSjnSngopRi84QKespUxx3502Nweuz-ZJ7zBuDa46m6hfhYwbbepXXQLNA4U9fhitFMr2JrixC5IB88oHBpX16cCqC_5eoMz6KS9YlyyaC6U4HUfZV5c8uBzmUhDCv6mM6n16-i09vU9PH9OrfV8OfXEKGbfmOWPyejZryhjQTC4W3f0f8RebfKPC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466209957</pqid></control><display><type>article</type><title>Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller</title><source>Taylor & Francis Open Access</source><creator>Chen, Qiping ; Shao, Hao ; Liu, Yu ; Xiao, Yuan ; Wang, Ning ; Shu, Qiang</creator><creatorcontrib>Chen, Qiping ; Shao, Hao ; Liu, Yu ; Xiao, Yuan ; Wang, Ning ; Shu, Qiang</creatorcontrib><description>Significant nonlinearity of electronic hydraulic brake (EHB) systems often leads to complex hydraulic force control responses. This paper designs a motor-driven EHB system and analyzes nonlinear friction induced by the deceleration mechanism. To compensate this friction, a flutter signal is added to the controller input. In addition, this paper designs a fuzzy-PI (Proportional and Integral) controller for the cylinder hydraulic pressure of the EHB system based on the opening and closing characteristics of a solenoid valve. Response curves of cylinder hydraulic pressure are obtained under three different input signals: step, triangular, and sinusoidal. The co-simulation model is established by AMEsim™ and Simulink® ansofts. The study results indicate that the proposed hydraulic-force-following control method of the EHB system can follow different input signals well. A step response test and a sine-wave-following test are carried out, which correspond to the EHB response in the case of driver's emergency braking and frequent braking, respectively. Stable and rapid pressure build-up is obtained under different step target hydraulic pressures. Therefore, the hydraulic-force-following control method of the EHB system based on a fuzzy-PI controller can satisfy the EHB system accuracy requirements for an electric vehicle, which is a certain valuable for the automobile industry.</description><identifier>ISSN: 1994-2060</identifier><identifier>EISSN: 1997-003X</identifier><identifier>DOI: 10.1080/19942060.2020.1816495</identifier><language>eng</language><publisher>Hong Kong: Taylor & Francis</publisher><subject>Brakes ; Braking ; Control methods ; Control systems ; Controllers ; Cylinders ; Deceleration ; EHB system ; electric vehicle ; Electric vehicles ; Emergency response ; Flutter ; Fuzzy control ; fuzzy PI ; Hydraulic pressure ; hydraulic pressure control ; Hydraulics ; Integrals ; Nonlinear analysis ; Nonlinearity ; Sine waves ; Solenoid valves ; Step response</subject><ispartof>Engineering applications of computational fluid mechanics, 2020-01, Vol.14 (1), p.1228-1236</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3</citedby><cites>FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19942060.2020.1816495$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19942060.2020.1816495$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Chen, Qiping</creatorcontrib><creatorcontrib>Shao, Hao</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Xiao, Yuan</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Shu, Qiang</creatorcontrib><title>Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller</title><title>Engineering applications of computational fluid mechanics</title><description>Significant nonlinearity of electronic hydraulic brake (EHB) systems often leads to complex hydraulic force control responses. This paper designs a motor-driven EHB system and analyzes nonlinear friction induced by the deceleration mechanism. To compensate this friction, a flutter signal is added to the controller input. In addition, this paper designs a fuzzy-PI (Proportional and Integral) controller for the cylinder hydraulic pressure of the EHB system based on the opening and closing characteristics of a solenoid valve. Response curves of cylinder hydraulic pressure are obtained under three different input signals: step, triangular, and sinusoidal. The co-simulation model is established by AMEsim™ and Simulink® ansofts. The study results indicate that the proposed hydraulic-force-following control method of the EHB system can follow different input signals well. A step response test and a sine-wave-following test are carried out, which correspond to the EHB response in the case of driver's emergency braking and frequent braking, respectively. Stable and rapid pressure build-up is obtained under different step target hydraulic pressures. Therefore, the hydraulic-force-following control method of the EHB system based on a fuzzy-PI controller can satisfy the EHB system accuracy requirements for an electric vehicle, which is a certain valuable for the automobile industry.</description><subject>Brakes</subject><subject>Braking</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Cylinders</subject><subject>Deceleration</subject><subject>EHB system</subject><subject>electric vehicle</subject><subject>Electric vehicles</subject><subject>Emergency response</subject><subject>Flutter</subject><subject>Fuzzy control</subject><subject>fuzzy PI</subject><subject>Hydraulic pressure</subject><subject>hydraulic pressure control</subject><subject>Hydraulics</subject><subject>Integrals</subject><subject>Nonlinear analysis</subject><subject>Nonlinearity</subject><subject>Sine waves</subject><subject>Solenoid valves</subject><subject>Step response</subject><issn>1994-2060</issn><issn>1997-003X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9r3DAQxU1poSHJRwgIenYqyZJs31pC2wQCuSTQm9Cf0Uap1tqObIJz7CevNrvpsSdpnt78RsNrmgtGLxkd6Gc2joJTRS855VUamBKjfNecVL1vKe1-vn-9i3Zv-ticlxItlbTvGOvFSfPnevVolhRdu0MoZUFoQ04pP8dpQ1yeZsyJ5EDMRCCBq-UUHXl86yIWzS8gZS0zbIk1BTzJEzEkLC8vK9lh3mWcY55MqghP4jTDBmtxRCfAs-ZDMKnA-fE8bR6-f7u_um5v737cXH29bZ2QbG5NUAH4wDru7ABM2MFLE2x9E6Cc7KVkrnNUSjnSngopRi84QKespUxx3502Nweuz-ZJ7zBuDa46m6hfhYwbbepXXQLNA4U9fhitFMr2JrixC5IB88oHBpX16cCqC_5eoMz6KS9YlyyaC6U4HUfZV5c8uBzmUhDCv6mM6n16-i09vU9PH9OrfV8OfXEKGbfmOWPyejZryhjQTC4W3f0f8RebfKPC</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Chen, Qiping</creator><creator>Shao, Hao</creator><creator>Liu, Yu</creator><creator>Xiao, Yuan</creator><creator>Wang, Ning</creator><creator>Shu, Qiang</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KR7</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20200101</creationdate><title>Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller</title><author>Chen, Qiping ; Shao, Hao ; Liu, Yu ; Xiao, Yuan ; Wang, Ning ; Shu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brakes</topic><topic>Braking</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Cylinders</topic><topic>Deceleration</topic><topic>EHB system</topic><topic>electric vehicle</topic><topic>Electric vehicles</topic><topic>Emergency response</topic><topic>Flutter</topic><topic>Fuzzy control</topic><topic>fuzzy PI</topic><topic>Hydraulic pressure</topic><topic>hydraulic pressure control</topic><topic>Hydraulics</topic><topic>Integrals</topic><topic>Nonlinear analysis</topic><topic>Nonlinearity</topic><topic>Sine waves</topic><topic>Solenoid valves</topic><topic>Step response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiping</creatorcontrib><creatorcontrib>Shao, Hao</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Xiao, Yuan</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Shu, Qiang</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Civil Engineering Abstracts</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Engineering applications of computational fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiping</au><au>Shao, Hao</au><au>Liu, Yu</au><au>Xiao, Yuan</au><au>Wang, Ning</au><au>Shu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller</atitle><jtitle>Engineering applications of computational fluid mechanics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>1228</spage><epage>1236</epage><pages>1228-1236</pages><issn>1994-2060</issn><eissn>1997-003X</eissn><abstract>Significant nonlinearity of electronic hydraulic brake (EHB) systems often leads to complex hydraulic force control responses. This paper designs a motor-driven EHB system and analyzes nonlinear friction induced by the deceleration mechanism. To compensate this friction, a flutter signal is added to the controller input. In addition, this paper designs a fuzzy-PI (Proportional and Integral) controller for the cylinder hydraulic pressure of the EHB system based on the opening and closing characteristics of a solenoid valve. Response curves of cylinder hydraulic pressure are obtained under three different input signals: step, triangular, and sinusoidal. The co-simulation model is established by AMEsim™ and Simulink® ansofts. The study results indicate that the proposed hydraulic-force-following control method of the EHB system can follow different input signals well. A step response test and a sine-wave-following test are carried out, which correspond to the EHB response in the case of driver's emergency braking and frequent braking, respectively. Stable and rapid pressure build-up is obtained under different step target hydraulic pressures. Therefore, the hydraulic-force-following control method of the EHB system based on a fuzzy-PI controller can satisfy the EHB system accuracy requirements for an electric vehicle, which is a certain valuable for the automobile industry.</abstract><cop>Hong Kong</cop><pub>Taylor & Francis</pub><doi>10.1080/19942060.2020.1816495</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1994-2060 |
ispartof | Engineering applications of computational fluid mechanics, 2020-01, Vol.14 (1), p.1228-1236 |
issn | 1994-2060 1997-003X |
language | eng |
recordid | cdi_proquest_journals_2466209957 |
source | Taylor & Francis Open Access |
subjects | Brakes Braking Control methods Control systems Controllers Cylinders Deceleration EHB system electric vehicle Electric vehicles Emergency response Flutter Fuzzy control fuzzy PI Hydraulic pressure hydraulic pressure control Hydraulics Integrals Nonlinear analysis Nonlinearity Sine waves Solenoid valves Step response |
title | Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydraulic-pressure-following%20control%20of%20an%20electronic%20hydraulic%20brake%20system%20based%20on%20a%20fuzzy%20proportional%20and%20integral%20controller&rft.jtitle=Engineering%20applications%20of%20computational%20fluid%20mechanics&rft.au=Chen,%20Qiping&rft.date=2020-01-01&rft.volume=14&rft.issue=1&rft.spage=1228&rft.epage=1236&rft.pages=1228-1236&rft.issn=1994-2060&rft.eissn=1997-003X&rft_id=info:doi/10.1080/19942060.2020.1816495&rft_dat=%3Cproquest_doaj_%3E2466209957%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-af6fe28132cb8e14b8d5afb4514e6c57551c3c055590704549d42ee36bb0162d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466209957&rft_id=info:pmid/&rfr_iscdi=true |