Loading…
Train Type Identification at S&C
The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicl...
Saved in:
Published in: | Journal of advanced transportation 2020-11, Vol.2020 (2020), p.1-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723 |
container_end_page | 12 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Journal of advanced transportation |
container_volume | 2020 |
creator | Vukušič, Ivan Apeltauer, Jiří Podroužek, Jan Kratochvílová, Martina Plášek, Otto |
description | The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed. |
doi_str_mv | 10.1155/2020/8849734 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2467508256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697108267</galeid><sourcerecordid>A697108267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723</originalsourceid><addsrcrecordid>eNqF0ctLwzAcB_AgCs7pzbMUBC_aLe80xzF8DAYenOeQtUmXsaUzaZH992Z0oIeBBBIIn98DvgDcIjhCiLExhhiOi4JKQegZGGBIcU6QZOdgAJEUORdYXoKrGNcQEskkHYBsEbTz2WK_M9msMr511pW6dY3PdJt9PEyvwYXVm2huju8QfL48L6Zv-fz9dTadzPOSCtrmjEOOEOYFJsIKIiFl1lZalAUhAhpIYYEqgYmUldBWFCUvqiWj0GBDWdqLDMF933cXmq_OxFatmy74NFJhygWDBWY8qbxXtd4Y5bxt2qDL2ngT9Kbxxrr0PeFSoOS5SH50wqdTma0rTxY8_SlYdtF5E9MVXb1qY627GE_yMjQxBmPVLritDnuFoDpkog6ZqGMmiT_2fOV8pb_df_qu1yYZY_WvRoJzKMkPo8aPvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467508256</pqid></control><display><type>article</type><title>Train Type Identification at S&C</title><source>ABI/INFORM Global (ProQuest)</source><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><creator>Vukušič, Ivan ; Apeltauer, Jiří ; Podroužek, Jan ; Kratochvílová, Martina ; Plášek, Otto</creator><contributor>Dolezel, Petr ; Petr Dolezel</contributor><creatorcontrib>Vukušič, Ivan ; Apeltauer, Jiří ; Podroužek, Jan ; Kratochvílová, Martina ; Plášek, Otto ; Dolezel, Petr ; Petr Dolezel</creatorcontrib><description>The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed.</description><identifier>ISSN: 0197-6729</identifier><identifier>EISSN: 2042-3195</identifier><identifier>DOI: 10.1155/2020/8849734</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Condition monitoring ; Kurtosis ; Learning algorithms ; Machine learning ; Railroad crossings ; Railroad track switches ; Railroads ; Sensors ; Skewness ; Standard deviation ; Transportation ; Velocity ; Vibration ; Vibration monitoring</subject><ispartof>Journal of advanced transportation, 2020-11, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Martina Kratochvílová et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Martina Kratochvílová et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723</citedby><cites>FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723</cites><orcidid>0000-0002-6713-7146 ; 0000-0003-0493-5922 ; 0000-0002-8001-6349 ; 0000-0003-2799-1521 ; 0000-0002-9791-4655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2467508256/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2467508256?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11687,25752,27923,27924,36059,37011,44362,44589,74666,74897</link.rule.ids></links><search><contributor>Dolezel, Petr</contributor><contributor>Petr Dolezel</contributor><creatorcontrib>Vukušič, Ivan</creatorcontrib><creatorcontrib>Apeltauer, Jiří</creatorcontrib><creatorcontrib>Podroužek, Jan</creatorcontrib><creatorcontrib>Kratochvílová, Martina</creatorcontrib><creatorcontrib>Plášek, Otto</creatorcontrib><title>Train Type Identification at S&C</title><title>Journal of advanced transportation</title><description>The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed.</description><subject>Condition monitoring</subject><subject>Kurtosis</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Railroad crossings</subject><subject>Railroad track switches</subject><subject>Railroads</subject><subject>Sensors</subject><subject>Skewness</subject><subject>Standard deviation</subject><subject>Transportation</subject><subject>Velocity</subject><subject>Vibration</subject><subject>Vibration monitoring</subject><issn>0197-6729</issn><issn>2042-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNqF0ctLwzAcB_AgCs7pzbMUBC_aLe80xzF8DAYenOeQtUmXsaUzaZH992Z0oIeBBBIIn98DvgDcIjhCiLExhhiOi4JKQegZGGBIcU6QZOdgAJEUORdYXoKrGNcQEskkHYBsEbTz2WK_M9msMr511pW6dY3PdJt9PEyvwYXVm2huju8QfL48L6Zv-fz9dTadzPOSCtrmjEOOEOYFJsIKIiFl1lZalAUhAhpIYYEqgYmUldBWFCUvqiWj0GBDWdqLDMF933cXmq_OxFatmy74NFJhygWDBWY8qbxXtd4Y5bxt2qDL2ngT9Kbxxrr0PeFSoOS5SH50wqdTma0rTxY8_SlYdtF5E9MVXb1qY627GE_yMjQxBmPVLritDnuFoDpkog6ZqGMmiT_2fOV8pb_df_qu1yYZY_WvRoJzKMkPo8aPvQ</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Vukušič, Ivan</creator><creator>Apeltauer, Jiří</creator><creator>Podroužek, Jan</creator><creator>Kratochvílová, Martina</creator><creator>Plášek, Otto</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6713-7146</orcidid><orcidid>https://orcid.org/0000-0003-0493-5922</orcidid><orcidid>https://orcid.org/0000-0002-8001-6349</orcidid><orcidid>https://orcid.org/0000-0003-2799-1521</orcidid><orcidid>https://orcid.org/0000-0002-9791-4655</orcidid></search><sort><creationdate>20201124</creationdate><title>Train Type Identification at S&C</title><author>Vukušič, Ivan ; Apeltauer, Jiří ; Podroužek, Jan ; Kratochvílová, Martina ; Plášek, Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Condition monitoring</topic><topic>Kurtosis</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Railroad crossings</topic><topic>Railroad track switches</topic><topic>Railroads</topic><topic>Sensors</topic><topic>Skewness</topic><topic>Standard deviation</topic><topic>Transportation</topic><topic>Velocity</topic><topic>Vibration</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vukušič, Ivan</creatorcontrib><creatorcontrib>Apeltauer, Jiří</creatorcontrib><creatorcontrib>Podroužek, Jan</creatorcontrib><creatorcontrib>Kratochvílová, Martina</creatorcontrib><creatorcontrib>Plášek, Otto</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of advanced transportation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vukušič, Ivan</au><au>Apeltauer, Jiří</au><au>Podroužek, Jan</au><au>Kratochvílová, Martina</au><au>Plášek, Otto</au><au>Dolezel, Petr</au><au>Petr Dolezel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Train Type Identification at S&C</atitle><jtitle>Journal of advanced transportation</jtitle><date>2020-11-24</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0197-6729</issn><eissn>2042-3195</eissn><abstract>The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8849734</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6713-7146</orcidid><orcidid>https://orcid.org/0000-0003-0493-5922</orcidid><orcidid>https://orcid.org/0000-0002-8001-6349</orcidid><orcidid>https://orcid.org/0000-0003-2799-1521</orcidid><orcidid>https://orcid.org/0000-0002-9791-4655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0197-6729 |
ispartof | Journal of advanced transportation, 2020-11, Vol.2020 (2020), p.1-12 |
issn | 0197-6729 2042-3195 |
language | eng |
recordid | cdi_proquest_journals_2467508256 |
source | ABI/INFORM Global (ProQuest); Publicly Available Content (ProQuest); Wiley Open Access |
subjects | Condition monitoring Kurtosis Learning algorithms Machine learning Railroad crossings Railroad track switches Railroads Sensors Skewness Standard deviation Transportation Velocity Vibration Vibration monitoring |
title | Train Type Identification at S&C |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Train%20Type%20Identification%20at%20S&C&rft.jtitle=Journal%20of%20advanced%20transportation&rft.au=Vuku%C5%A1i%C4%8D,%20Ivan&rft.date=2020-11-24&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0197-6729&rft.eissn=2042-3195&rft_id=info:doi/10.1155/2020/8849734&rft_dat=%3Cgale_proqu%3EA697108267%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467508256&rft_id=info:pmid/&rft_galeid=A697108267&rfr_iscdi=true |