Loading…

Train Type Identification at S&C

The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced transportation 2020-11, Vol.2020 (2020), p.1-12
Main Authors: Vukušič, Ivan, Apeltauer, Jiří, Podroužek, Jan, Kratochvílová, Martina, Plášek, Otto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723
cites cdi_FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723
container_end_page 12
container_issue 2020
container_start_page 1
container_title Journal of advanced transportation
container_volume 2020
creator Vukušič, Ivan
Apeltauer, Jiří
Podroužek, Jan
Kratochvílová, Martina
Plášek, Otto
description The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed.
doi_str_mv 10.1155/2020/8849734
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2467508256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697108267</galeid><sourcerecordid>A697108267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723</originalsourceid><addsrcrecordid>eNqF0ctLwzAcB_AgCs7pzbMUBC_aLe80xzF8DAYenOeQtUmXsaUzaZH992Z0oIeBBBIIn98DvgDcIjhCiLExhhiOi4JKQegZGGBIcU6QZOdgAJEUORdYXoKrGNcQEskkHYBsEbTz2WK_M9msMr511pW6dY3PdJt9PEyvwYXVm2huju8QfL48L6Zv-fz9dTadzPOSCtrmjEOOEOYFJsIKIiFl1lZalAUhAhpIYYEqgYmUldBWFCUvqiWj0GBDWdqLDMF933cXmq_OxFatmy74NFJhygWDBWY8qbxXtd4Y5bxt2qDL2ngT9Kbxxrr0PeFSoOS5SH50wqdTma0rTxY8_SlYdtF5E9MVXb1qY627GE_yMjQxBmPVLritDnuFoDpkog6ZqGMmiT_2fOV8pb_df_qu1yYZY_WvRoJzKMkPo8aPvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467508256</pqid></control><display><type>article</type><title>Train Type Identification at S&amp;C</title><source>ABI/INFORM Global (ProQuest)</source><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><creator>Vukušič, Ivan ; Apeltauer, Jiří ; Podroužek, Jan ; Kratochvílová, Martina ; Plášek, Otto</creator><contributor>Dolezel, Petr ; Petr Dolezel</contributor><creatorcontrib>Vukušič, Ivan ; Apeltauer, Jiří ; Podroužek, Jan ; Kratochvílová, Martina ; Plášek, Otto ; Dolezel, Petr ; Petr Dolezel</creatorcontrib><description>The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed.</description><identifier>ISSN: 0197-6729</identifier><identifier>EISSN: 2042-3195</identifier><identifier>DOI: 10.1155/2020/8849734</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Condition monitoring ; Kurtosis ; Learning algorithms ; Machine learning ; Railroad crossings ; Railroad track switches ; Railroads ; Sensors ; Skewness ; Standard deviation ; Transportation ; Velocity ; Vibration ; Vibration monitoring</subject><ispartof>Journal of advanced transportation, 2020-11, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Martina Kratochvílová et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Martina Kratochvílová et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723</citedby><cites>FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723</cites><orcidid>0000-0002-6713-7146 ; 0000-0003-0493-5922 ; 0000-0002-8001-6349 ; 0000-0003-2799-1521 ; 0000-0002-9791-4655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2467508256/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2467508256?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11687,25752,27923,27924,36059,37011,44362,44589,74666,74897</link.rule.ids></links><search><contributor>Dolezel, Petr</contributor><contributor>Petr Dolezel</contributor><creatorcontrib>Vukušič, Ivan</creatorcontrib><creatorcontrib>Apeltauer, Jiří</creatorcontrib><creatorcontrib>Podroužek, Jan</creatorcontrib><creatorcontrib>Kratochvílová, Martina</creatorcontrib><creatorcontrib>Plášek, Otto</creatorcontrib><title>Train Type Identification at S&amp;C</title><title>Journal of advanced transportation</title><description>The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed.</description><subject>Condition monitoring</subject><subject>Kurtosis</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Railroad crossings</subject><subject>Railroad track switches</subject><subject>Railroads</subject><subject>Sensors</subject><subject>Skewness</subject><subject>Standard deviation</subject><subject>Transportation</subject><subject>Velocity</subject><subject>Vibration</subject><subject>Vibration monitoring</subject><issn>0197-6729</issn><issn>2042-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNqF0ctLwzAcB_AgCs7pzbMUBC_aLe80xzF8DAYenOeQtUmXsaUzaZH992Z0oIeBBBIIn98DvgDcIjhCiLExhhiOi4JKQegZGGBIcU6QZOdgAJEUORdYXoKrGNcQEskkHYBsEbTz2WK_M9msMr511pW6dY3PdJt9PEyvwYXVm2huju8QfL48L6Zv-fz9dTadzPOSCtrmjEOOEOYFJsIKIiFl1lZalAUhAhpIYYEqgYmUldBWFCUvqiWj0GBDWdqLDMF933cXmq_OxFatmy74NFJhygWDBWY8qbxXtd4Y5bxt2qDL2ngT9Kbxxrr0PeFSoOS5SH50wqdTma0rTxY8_SlYdtF5E9MVXb1qY627GE_yMjQxBmPVLritDnuFoDpkog6ZqGMmiT_2fOV8pb_df_qu1yYZY_WvRoJzKMkPo8aPvQ</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Vukušič, Ivan</creator><creator>Apeltauer, Jiří</creator><creator>Podroužek, Jan</creator><creator>Kratochvílová, Martina</creator><creator>Plášek, Otto</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6713-7146</orcidid><orcidid>https://orcid.org/0000-0003-0493-5922</orcidid><orcidid>https://orcid.org/0000-0002-8001-6349</orcidid><orcidid>https://orcid.org/0000-0003-2799-1521</orcidid><orcidid>https://orcid.org/0000-0002-9791-4655</orcidid></search><sort><creationdate>20201124</creationdate><title>Train Type Identification at S&amp;C</title><author>Vukušič, Ivan ; Apeltauer, Jiří ; Podroužek, Jan ; Kratochvílová, Martina ; Plášek, Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Condition monitoring</topic><topic>Kurtosis</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Railroad crossings</topic><topic>Railroad track switches</topic><topic>Railroads</topic><topic>Sensors</topic><topic>Skewness</topic><topic>Standard deviation</topic><topic>Transportation</topic><topic>Velocity</topic><topic>Vibration</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vukušič, Ivan</creatorcontrib><creatorcontrib>Apeltauer, Jiří</creatorcontrib><creatorcontrib>Podroužek, Jan</creatorcontrib><creatorcontrib>Kratochvílová, Martina</creatorcontrib><creatorcontrib>Plášek, Otto</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of advanced transportation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vukušič, Ivan</au><au>Apeltauer, Jiří</au><au>Podroužek, Jan</au><au>Kratochvílová, Martina</au><au>Plášek, Otto</au><au>Dolezel, Petr</au><au>Petr Dolezel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Train Type Identification at S&amp;C</atitle><jtitle>Journal of advanced transportation</jtitle><date>2020-11-24</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0197-6729</issn><eissn>2042-3195</eissn><abstract>The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8849734</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6713-7146</orcidid><orcidid>https://orcid.org/0000-0003-0493-5922</orcidid><orcidid>https://orcid.org/0000-0002-8001-6349</orcidid><orcidid>https://orcid.org/0000-0003-2799-1521</orcidid><orcidid>https://orcid.org/0000-0002-9791-4655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0197-6729
ispartof Journal of advanced transportation, 2020-11, Vol.2020 (2020), p.1-12
issn 0197-6729
2042-3195
language eng
recordid cdi_proquest_journals_2467508256
source ABI/INFORM Global (ProQuest); Publicly Available Content (ProQuest); Wiley Open Access
subjects Condition monitoring
Kurtosis
Learning algorithms
Machine learning
Railroad crossings
Railroad track switches
Railroads
Sensors
Skewness
Standard deviation
Transportation
Velocity
Vibration
Vibration monitoring
title Train Type Identification at S&C
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Train%20Type%20Identification%20at%20S&C&rft.jtitle=Journal%20of%20advanced%20transportation&rft.au=Vuku%C5%A1i%C4%8D,%20Ivan&rft.date=2020-11-24&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0197-6729&rft.eissn=2042-3195&rft_id=info:doi/10.1155/2020/8849734&rft_dat=%3Cgale_proqu%3EA697108267%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-560611268237f739045ffda7c83370e04081d72399d7af78c68db540e2e456723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467508256&rft_id=info:pmid/&rft_galeid=A697108267&rfr_iscdi=true