Loading…

A new algorithm for fractional differential equation based on fractional order reproducing kernel space

This paper develops an effective and new method to solve a class of fractional differential equations. The method is based on a fractional order reproducing kernel space. First, depending on some theories, a fractional order reproducing kernel space Wα[0, 1] is constructed. The fractional order repr...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2021-01, Vol.44 (2), p.2171-2182
Main Authors: Zhang, Ruimin, Lin, Yingzhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2937-f7c3bf4ff3cb1c5ae105d72adbc306706abdfa9248af78b2928c9f06670e923c3
cites cdi_FETCH-LOGICAL-c2937-f7c3bf4ff3cb1c5ae105d72adbc306706abdfa9248af78b2928c9f06670e923c3
container_end_page 2182
container_issue 2
container_start_page 2171
container_title Mathematical methods in the applied sciences
container_volume 44
creator Zhang, Ruimin
Lin, Yingzhen
description This paper develops an effective and new method to solve a class of fractional differential equations. The method is based on a fractional order reproducing kernel space. First, depending on some theories, a fractional order reproducing kernel space Wα[0, 1] is constructed. The fractional order reproducing kernel space is a very suitable space to solve a class of fractional differential equations. Then, we calculate the reproducing kernel Ry(x) of the space Wα[0, 1] skilfully in §3. And convergence order and time complexity of this algorithm are discussed. We prove that the approximate solution un of (1.1) converges to its exact solution u is not less than the second order. The time complexity of the algorithm is equal to the polynomial time of the third degree. Finally, three experiments support the algorithm strongly from the aspect of theory and technique.
doi_str_mv 10.1002/mma.6927
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2467508574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467508574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-f7c3bf4ff3cb1c5ae105d72adbc306706abdfa9248af78b2928c9f06670e923c3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKvgIwTcuJl6krlksizFG7S40XXIZE5q6lzaZIbStze1Lty4OrePw89HyC2DGQPgD22rZ4Xk4oxMGEiZsEwU52QCTECScZZdkqsQNgBQMsYnZD2nHe6pbta9d8NnS23vqfXaDK7vdENrZy167AYXB9yN-rinlQ5Y09j8IXtfo6cet76vR-O6Nf1C32FDw1YbvCYXVjcBb37rlHw8Pb4vXpLl2_PrYr5MDJepSKwwaWUza1NTMZNrZJDXguu6MikUAgpd1VZLnpXairLikpdGWijiCSVPTTold6e_McZuxDCoTT_6mC8onhUihzIXWaTuT5TxfQgerdp612p_UAzUUaOKGtVRY0STE7p3DR7-5dRqNf_hvwGb53Vb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467508574</pqid></control><display><type>article</type><title>A new algorithm for fractional differential equation based on fractional order reproducing kernel space</title><source>Wiley</source><creator>Zhang, Ruimin ; Lin, Yingzhen</creator><creatorcontrib>Zhang, Ruimin ; Lin, Yingzhen</creatorcontrib><description>This paper develops an effective and new method to solve a class of fractional differential equations. The method is based on a fractional order reproducing kernel space. First, depending on some theories, a fractional order reproducing kernel space Wα[0, 1] is constructed. The fractional order reproducing kernel space is a very suitable space to solve a class of fractional differential equations. Then, we calculate the reproducing kernel Ry(x) of the space Wα[0, 1] skilfully in §3. And convergence order and time complexity of this algorithm are discussed. We prove that the approximate solution un of (1.1) converges to its exact solution u is not less than the second order. The time complexity of the algorithm is equal to the polynomial time of the third degree. Finally, three experiments support the algorithm strongly from the aspect of theory and technique.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6927</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Complexity ; complexity analysis ; Convergence ; convergence order ; Differential equations ; Exact solutions ; fractional reproducing kernel space ; initial value problem of fractional equations ; Kernels ; Mathematical analysis ; Polynomials</subject><ispartof>Mathematical methods in the applied sciences, 2021-01, Vol.44 (2), p.2171-2182</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-f7c3bf4ff3cb1c5ae105d72adbc306706abdfa9248af78b2928c9f06670e923c3</citedby><cites>FETCH-LOGICAL-c2937-f7c3bf4ff3cb1c5ae105d72adbc306706abdfa9248af78b2928c9f06670e923c3</cites><orcidid>0000-0002-3930-4648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Ruimin</creatorcontrib><creatorcontrib>Lin, Yingzhen</creatorcontrib><title>A new algorithm for fractional differential equation based on fractional order reproducing kernel space</title><title>Mathematical methods in the applied sciences</title><description>This paper develops an effective and new method to solve a class of fractional differential equations. The method is based on a fractional order reproducing kernel space. First, depending on some theories, a fractional order reproducing kernel space Wα[0, 1] is constructed. The fractional order reproducing kernel space is a very suitable space to solve a class of fractional differential equations. Then, we calculate the reproducing kernel Ry(x) of the space Wα[0, 1] skilfully in §3. And convergence order and time complexity of this algorithm are discussed. We prove that the approximate solution un of (1.1) converges to its exact solution u is not less than the second order. The time complexity of the algorithm is equal to the polynomial time of the third degree. Finally, three experiments support the algorithm strongly from the aspect of theory and technique.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>complexity analysis</subject><subject>Convergence</subject><subject>convergence order</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>fractional reproducing kernel space</subject><subject>initial value problem of fractional equations</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKvgIwTcuJl6krlksizFG7S40XXIZE5q6lzaZIbStze1Lty4OrePw89HyC2DGQPgD22rZ4Xk4oxMGEiZsEwU52QCTECScZZdkqsQNgBQMsYnZD2nHe6pbta9d8NnS23vqfXaDK7vdENrZy167AYXB9yN-rinlQ5Y09j8IXtfo6cet76vR-O6Nf1C32FDw1YbvCYXVjcBb37rlHw8Pb4vXpLl2_PrYr5MDJepSKwwaWUza1NTMZNrZJDXguu6MikUAgpd1VZLnpXairLikpdGWijiCSVPTTold6e_McZuxDCoTT_6mC8onhUihzIXWaTuT5TxfQgerdp612p_UAzUUaOKGtVRY0STE7p3DR7-5dRqNf_hvwGb53Vb</recordid><startdate>20210130</startdate><enddate>20210130</enddate><creator>Zhang, Ruimin</creator><creator>Lin, Yingzhen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-3930-4648</orcidid></search><sort><creationdate>20210130</creationdate><title>A new algorithm for fractional differential equation based on fractional order reproducing kernel space</title><author>Zhang, Ruimin ; Lin, Yingzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-f7c3bf4ff3cb1c5ae105d72adbc306706abdfa9248af78b2928c9f06670e923c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>complexity analysis</topic><topic>Convergence</topic><topic>convergence order</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>fractional reproducing kernel space</topic><topic>initial value problem of fractional equations</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ruimin</creatorcontrib><creatorcontrib>Lin, Yingzhen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ruimin</au><au>Lin, Yingzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new algorithm for fractional differential equation based on fractional order reproducing kernel space</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-01-30</date><risdate>2021</risdate><volume>44</volume><issue>2</issue><spage>2171</spage><epage>2182</epage><pages>2171-2182</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper develops an effective and new method to solve a class of fractional differential equations. The method is based on a fractional order reproducing kernel space. First, depending on some theories, a fractional order reproducing kernel space Wα[0, 1] is constructed. The fractional order reproducing kernel space is a very suitable space to solve a class of fractional differential equations. Then, we calculate the reproducing kernel Ry(x) of the space Wα[0, 1] skilfully in §3. And convergence order and time complexity of this algorithm are discussed. We prove that the approximate solution un of (1.1) converges to its exact solution u is not less than the second order. The time complexity of the algorithm is equal to the polynomial time of the third degree. Finally, three experiments support the algorithm strongly from the aspect of theory and technique.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6927</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3930-4648</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-01, Vol.44 (2), p.2171-2182
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2467508574
source Wiley
subjects Algorithms
Complexity
complexity analysis
Convergence
convergence order
Differential equations
Exact solutions
fractional reproducing kernel space
initial value problem of fractional equations
Kernels
Mathematical analysis
Polynomials
title A new algorithm for fractional differential equation based on fractional order reproducing kernel space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20algorithm%20for%20fractional%20differential%20equation%20based%20on%20fractional%20order%20reproducing%20kernel%20space&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Zhang,%20Ruimin&rft.date=2021-01-30&rft.volume=44&rft.issue=2&rft.spage=2171&rft.epage=2182&rft.pages=2171-2182&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6927&rft_dat=%3Cproquest_cross%3E2467508574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2937-f7c3bf4ff3cb1c5ae105d72adbc306706abdfa9248af78b2928c9f06670e923c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467508574&rft_id=info:pmid/&rfr_iscdi=true