Loading…

Dye stabilization and wavelength tunability in lasing fibers based on DNA

Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. DNA as optical biopolymer in combination with highly-emissive dyes has been reported to have excellent potential in this respect, however achieving miniaturized lasi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-12
Main Authors: Persano, Luana, Szukalski, Adam, Gaio, Michele, Moffa, Maria, Salvadori, Giacomo, Sznitko, Lech, Camposeo, Andrea, Mysliwiec, Jaroslaw, Sapienza, Riccardo, Mennucci, Benedetta, Pisignano, Dario
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Persano, Luana
Szukalski, Adam
Gaio, Michele
Moffa, Maria
Salvadori, Giacomo
Sznitko, Lech
Camposeo, Andrea
Mysliwiec, Jaroslaw
Sapienza, Riccardo
Mennucci, Benedetta
Pisignano, Dario
description Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. DNA as optical biopolymer in combination with highly-emissive dyes has been reported to have excellent potential in this respect, however achieving miniaturized lasing systems based on solid-state DNA shaped in different geometries to confine and enhance emission is still a challenge, and physico-chemical mechanisms originating fluorescence enhancement are not fully understood. Herein, a class of wavelength-tunable lasers based on DNA nanofibers is demonstrated, for which optical properties are highly controlled through the system morphology. A synergistic effect is highlighted at the basis of lasing action. Through a quantum chemical investigation, we show that the interaction of DNA with the encapsulated dye leads to hindered twisting and suppressed channels for the non-radiative decay. This is combined with effective waveguiding, optical gain, and tailored mode confinement to promote morphologically-controlled lasing in DNA-based nanofibers. The results establish design rules for the development of bright and tunable nanolasers and optical networks based on DNA nanostructures.
doi_str_mv 10.48550/arxiv.2012.03106
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2468030180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468030180</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-41becf3c1211f1daf4c27389650af81bb978b7cd4f62b3ef6fa06b4fea7f3ba43</originalsourceid><addsrcrecordid>eNotjctOwzAURC0kJKrSD2BniXXC9bXjuMuq5VGpgk331XViF1eRA7FTKF9PRdnMLI7mDGN3AkplqgoeaPgOxxJBYAlSgL5iE5RSFEYh3rBZSgcAQF1jVckJW69OjqdMNnThh3LoI6fY8i86us7FfX7neYx_NJ94iLyjFOKe-2DdkLil5Fp-3qxeF7fs2lOX3Oy_p2z79LhdvhSbt-f1crEpqEIolLCu8bIRKIQXLXnVYC3NXFdA3ghr57WxddMqr9FK57Un0FZ5R7WXlpScsvuL9mPoP0eX8u7Qj0M8P-5QaQMSxDl-AagYTqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468030180</pqid></control><display><type>article</type><title>Dye stabilization and wavelength tunability in lasing fibers based on DNA</title><source>ProQuest - Publicly Available Content Database</source><creator>Persano, Luana ; Szukalski, Adam ; Gaio, Michele ; Moffa, Maria ; Salvadori, Giacomo ; Sznitko, Lech ; Camposeo, Andrea ; Mysliwiec, Jaroslaw ; Sapienza, Riccardo ; Mennucci, Benedetta ; Pisignano, Dario</creator><creatorcontrib>Persano, Luana ; Szukalski, Adam ; Gaio, Michele ; Moffa, Maria ; Salvadori, Giacomo ; Sznitko, Lech ; Camposeo, Andrea ; Mysliwiec, Jaroslaw ; Sapienza, Riccardo ; Mennucci, Benedetta ; Pisignano, Dario</creatorcontrib><description>Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. DNA as optical biopolymer in combination with highly-emissive dyes has been reported to have excellent potential in this respect, however achieving miniaturized lasing systems based on solid-state DNA shaped in different geometries to confine and enhance emission is still a challenge, and physico-chemical mechanisms originating fluorescence enhancement are not fully understood. Herein, a class of wavelength-tunable lasers based on DNA nanofibers is demonstrated, for which optical properties are highly controlled through the system morphology. A synergistic effect is highlighted at the basis of lasing action. Through a quantum chemical investigation, we show that the interaction of DNA with the encapsulated dye leads to hindered twisting and suppressed channels for the non-radiative decay. This is combined with effective waveguiding, optical gain, and tailored mode confinement to promote morphologically-controlled lasing in DNA-based nanofibers. The results establish design rules for the development of bright and tunable nanolasers and optical networks based on DNA nanostructures.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2012.03106</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biological materials ; Biopolymers ; Deoxyribonucleic acid ; DNA ; Dyes ; Fluorescence ; Lasing ; Nanofibers ; Optical communication ; Optical properties ; Quantum chemistry ; Synergistic effect ; Tunable lasers ; Twisting</subject><ispartof>arXiv.org, 2020-12</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2468030180?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Persano, Luana</creatorcontrib><creatorcontrib>Szukalski, Adam</creatorcontrib><creatorcontrib>Gaio, Michele</creatorcontrib><creatorcontrib>Moffa, Maria</creatorcontrib><creatorcontrib>Salvadori, Giacomo</creatorcontrib><creatorcontrib>Sznitko, Lech</creatorcontrib><creatorcontrib>Camposeo, Andrea</creatorcontrib><creatorcontrib>Mysliwiec, Jaroslaw</creatorcontrib><creatorcontrib>Sapienza, Riccardo</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><creatorcontrib>Pisignano, Dario</creatorcontrib><title>Dye stabilization and wavelength tunability in lasing fibers based on DNA</title><title>arXiv.org</title><description>Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. DNA as optical biopolymer in combination with highly-emissive dyes has been reported to have excellent potential in this respect, however achieving miniaturized lasing systems based on solid-state DNA shaped in different geometries to confine and enhance emission is still a challenge, and physico-chemical mechanisms originating fluorescence enhancement are not fully understood. Herein, a class of wavelength-tunable lasers based on DNA nanofibers is demonstrated, for which optical properties are highly controlled through the system morphology. A synergistic effect is highlighted at the basis of lasing action. Through a quantum chemical investigation, we show that the interaction of DNA with the encapsulated dye leads to hindered twisting and suppressed channels for the non-radiative decay. This is combined with effective waveguiding, optical gain, and tailored mode confinement to promote morphologically-controlled lasing in DNA-based nanofibers. The results establish design rules for the development of bright and tunable nanolasers and optical networks based on DNA nanostructures.</description><subject>Biological materials</subject><subject>Biopolymers</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dyes</subject><subject>Fluorescence</subject><subject>Lasing</subject><subject>Nanofibers</subject><subject>Optical communication</subject><subject>Optical properties</subject><subject>Quantum chemistry</subject><subject>Synergistic effect</subject><subject>Tunable lasers</subject><subject>Twisting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctOwzAURC0kJKrSD2BniXXC9bXjuMuq5VGpgk331XViF1eRA7FTKF9PRdnMLI7mDGN3AkplqgoeaPgOxxJBYAlSgL5iE5RSFEYh3rBZSgcAQF1jVckJW69OjqdMNnThh3LoI6fY8i86us7FfX7neYx_NJ94iLyjFOKe-2DdkLil5Fp-3qxeF7fs2lOX3Oy_p2z79LhdvhSbt-f1crEpqEIolLCu8bIRKIQXLXnVYC3NXFdA3ghr57WxddMqr9FK57Un0FZ5R7WXlpScsvuL9mPoP0eX8u7Qj0M8P-5QaQMSxDl-AagYTqU</recordid><startdate>20201205</startdate><enddate>20201205</enddate><creator>Persano, Luana</creator><creator>Szukalski, Adam</creator><creator>Gaio, Michele</creator><creator>Moffa, Maria</creator><creator>Salvadori, Giacomo</creator><creator>Sznitko, Lech</creator><creator>Camposeo, Andrea</creator><creator>Mysliwiec, Jaroslaw</creator><creator>Sapienza, Riccardo</creator><creator>Mennucci, Benedetta</creator><creator>Pisignano, Dario</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201205</creationdate><title>Dye stabilization and wavelength tunability in lasing fibers based on DNA</title><author>Persano, Luana ; Szukalski, Adam ; Gaio, Michele ; Moffa, Maria ; Salvadori, Giacomo ; Sznitko, Lech ; Camposeo, Andrea ; Mysliwiec, Jaroslaw ; Sapienza, Riccardo ; Mennucci, Benedetta ; Pisignano, Dario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-41becf3c1211f1daf4c27389650af81bb978b7cd4f62b3ef6fa06b4fea7f3ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological materials</topic><topic>Biopolymers</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dyes</topic><topic>Fluorescence</topic><topic>Lasing</topic><topic>Nanofibers</topic><topic>Optical communication</topic><topic>Optical properties</topic><topic>Quantum chemistry</topic><topic>Synergistic effect</topic><topic>Tunable lasers</topic><topic>Twisting</topic><toplevel>online_resources</toplevel><creatorcontrib>Persano, Luana</creatorcontrib><creatorcontrib>Szukalski, Adam</creatorcontrib><creatorcontrib>Gaio, Michele</creatorcontrib><creatorcontrib>Moffa, Maria</creatorcontrib><creatorcontrib>Salvadori, Giacomo</creatorcontrib><creatorcontrib>Sznitko, Lech</creatorcontrib><creatorcontrib>Camposeo, Andrea</creatorcontrib><creatorcontrib>Mysliwiec, Jaroslaw</creatorcontrib><creatorcontrib>Sapienza, Riccardo</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><creatorcontrib>Pisignano, Dario</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persano, Luana</au><au>Szukalski, Adam</au><au>Gaio, Michele</au><au>Moffa, Maria</au><au>Salvadori, Giacomo</au><au>Sznitko, Lech</au><au>Camposeo, Andrea</au><au>Mysliwiec, Jaroslaw</au><au>Sapienza, Riccardo</au><au>Mennucci, Benedetta</au><au>Pisignano, Dario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dye stabilization and wavelength tunability in lasing fibers based on DNA</atitle><jtitle>arXiv.org</jtitle><date>2020-12-05</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. DNA as optical biopolymer in combination with highly-emissive dyes has been reported to have excellent potential in this respect, however achieving miniaturized lasing systems based on solid-state DNA shaped in different geometries to confine and enhance emission is still a challenge, and physico-chemical mechanisms originating fluorescence enhancement are not fully understood. Herein, a class of wavelength-tunable lasers based on DNA nanofibers is demonstrated, for which optical properties are highly controlled through the system morphology. A synergistic effect is highlighted at the basis of lasing action. Through a quantum chemical investigation, we show that the interaction of DNA with the encapsulated dye leads to hindered twisting and suppressed channels for the non-radiative decay. This is combined with effective waveguiding, optical gain, and tailored mode confinement to promote morphologically-controlled lasing in DNA-based nanofibers. The results establish design rules for the development of bright and tunable nanolasers and optical networks based on DNA nanostructures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2012.03106</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2468030180
source ProQuest - Publicly Available Content Database
subjects Biological materials
Biopolymers
Deoxyribonucleic acid
DNA
Dyes
Fluorescence
Lasing
Nanofibers
Optical communication
Optical properties
Quantum chemistry
Synergistic effect
Tunable lasers
Twisting
title Dye stabilization and wavelength tunability in lasing fibers based on DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dye%20stabilization%20and%20wavelength%20tunability%20in%20lasing%20fibers%20based%20on%20DNA&rft.jtitle=arXiv.org&rft.au=Persano,%20Luana&rft.date=2020-12-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2012.03106&rft_dat=%3Cproquest%3E2468030180%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-41becf3c1211f1daf4c27389650af81bb978b7cd4f62b3ef6fa06b4fea7f3ba43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468030180&rft_id=info:pmid/&rfr_iscdi=true