Loading…

Applications of different nano-sized conductive materials in high energy density pouch type lithium ion batteries

Lots of lithium ion battery (LIB) products contain lithium metal oxide LiNi5Co2Mn3O2 (LNCM) as positive electrode active material. To increase the conductivity, conductive carbon-based materials including acetylene black and carbon black become necessarily consisted in electrodes. Recently, carbon n...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2020-12, Vol.362, p.137166, Article 137166
Main Authors: Tsai, Shan-Ho, Tsou, Yi-Lin, Yang, Chih-Wei, Chen, Tsan-Yao, Lee, Chi-Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-25982b7f7ecd7e72d8f478d17857654a4300bf3ca97ac2465c1e5b23506126253
cites cdi_FETCH-LOGICAL-c343t-25982b7f7ecd7e72d8f478d17857654a4300bf3ca97ac2465c1e5b23506126253
container_end_page
container_issue
container_start_page 137166
container_title Electrochimica acta
container_volume 362
creator Tsai, Shan-Ho
Tsou, Yi-Lin
Yang, Chih-Wei
Chen, Tsan-Yao
Lee, Chi-Young
description Lots of lithium ion battery (LIB) products contain lithium metal oxide LiNi5Co2Mn3O2 (LNCM) as positive electrode active material. To increase the conductivity, conductive carbon-based materials including acetylene black and carbon black become necessarily consisted in electrodes. Recently, carbon nano-tube (CNT) appears as a popular choice for conductive carbon in LIB. However, a large quantity of the conductive carbon which cannot provide capacity as the active material will decrease the energy density of batteries. The ultra-high cost of CNT comparing to conventional carbon black is also a problem. In this work, we are going to introduce ‘short length’ and ‘long length’ carbon nano-tube (S-CNT and L-CNT) into electrode in order to design a reduced-amount conductive carbon electrode. The whole experiment will be done in 1 Ah commercial type pouch LIB. By decreasing conductive carbon as well as increasing the active material in positive electrode, the energy density of LNCM-based 1Ah pouch type LIBs with only 0.16% of L-CNT inside LNCM positive electrode could reach 224 Wh/kg and 549 Wh/L, in weight and volume energy density, respectively. Also, this high energy density LIB with L-CNT reveals stable cyclability may become a valuable progress in portable devices and electric vehicle (EV) applications.
doi_str_mv 10.1016/j.electacta.2020.137166
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468382767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620315590</els_id><sourcerecordid>2468382767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-25982b7f7ecd7e72d8f478d17857654a4300bf3ca97ac2465c1e5b23506126253</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKu_wYDrqfmYSdJlEb9AcKPrkCZv2pQ2mSYZof56UypuhcCDcO59vIPQLSUzSqi438xgC7aY-maMsPrLJRXiDE2okrzhqpufowkhlDetUOISXeW8IYRIIckE7RfDsPXWFB9DxrHHzvc9JAgFBxNik_03OGxjcKMt_gvwzhRI3mwz9gGv_WqNIUBaHbCDkH054CGOdo3LYQC89WXtxx2u3XhpyjEI-Rpd9DUON79zij6fHj8eXpq39-fXh8VbY3nLS8O6uWJL2UuwToJkTvWtVI5K1UnRtablhCx7bs1cGsta0VkK3ZLxjgjKBOv4FN2deocU9yPkojdxTKGu1BVXXLFqoFLyRNkUc07Q6yH5nUkHTYk--tUb_edXH_3qk9-aXJySUI_48pB0th6CBedT5bWL_t-OHwnciTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468382767</pqid></control><display><type>article</type><title>Applications of different nano-sized conductive materials in high energy density pouch type lithium ion batteries</title><source>Elsevier</source><creator>Tsai, Shan-Ho ; Tsou, Yi-Lin ; Yang, Chih-Wei ; Chen, Tsan-Yao ; Lee, Chi-Young</creator><creatorcontrib>Tsai, Shan-Ho ; Tsou, Yi-Lin ; Yang, Chih-Wei ; Chen, Tsan-Yao ; Lee, Chi-Young</creatorcontrib><description>Lots of lithium ion battery (LIB) products contain lithium metal oxide LiNi5Co2Mn3O2 (LNCM) as positive electrode active material. To increase the conductivity, conductive carbon-based materials including acetylene black and carbon black become necessarily consisted in electrodes. Recently, carbon nano-tube (CNT) appears as a popular choice for conductive carbon in LIB. However, a large quantity of the conductive carbon which cannot provide capacity as the active material will decrease the energy density of batteries. The ultra-high cost of CNT comparing to conventional carbon black is also a problem. In this work, we are going to introduce ‘short length’ and ‘long length’ carbon nano-tube (S-CNT and L-CNT) into electrode in order to design a reduced-amount conductive carbon electrode. The whole experiment will be done in 1 Ah commercial type pouch LIB. By decreasing conductive carbon as well as increasing the active material in positive electrode, the energy density of LNCM-based 1Ah pouch type LIBs with only 0.16% of L-CNT inside LNCM positive electrode could reach 224 Wh/kg and 549 Wh/L, in weight and volume energy density, respectively. Also, this high energy density LIB with L-CNT reveals stable cyclability may become a valuable progress in portable devices and electric vehicle (EV) applications.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137166</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acetylene ; Carbon black ; Carbon nanotubes ; CNT ; Electric vehicles ; Electrodes ; Flux density ; High energy density ; Ionic conductivity ; Li-ion pouch cell ; Lithium ; Lithium-ion batteries ; Metal oxides ; Portable equipment ; Rechargeable batteries</subject><ispartof>Electrochimica acta, 2020-12, Vol.362, p.137166, Article 137166</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Dec 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-25982b7f7ecd7e72d8f478d17857654a4300bf3ca97ac2465c1e5b23506126253</citedby><cites>FETCH-LOGICAL-c343t-25982b7f7ecd7e72d8f478d17857654a4300bf3ca97ac2465c1e5b23506126253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tsai, Shan-Ho</creatorcontrib><creatorcontrib>Tsou, Yi-Lin</creatorcontrib><creatorcontrib>Yang, Chih-Wei</creatorcontrib><creatorcontrib>Chen, Tsan-Yao</creatorcontrib><creatorcontrib>Lee, Chi-Young</creatorcontrib><title>Applications of different nano-sized conductive materials in high energy density pouch type lithium ion batteries</title><title>Electrochimica acta</title><description>Lots of lithium ion battery (LIB) products contain lithium metal oxide LiNi5Co2Mn3O2 (LNCM) as positive electrode active material. To increase the conductivity, conductive carbon-based materials including acetylene black and carbon black become necessarily consisted in electrodes. Recently, carbon nano-tube (CNT) appears as a popular choice for conductive carbon in LIB. However, a large quantity of the conductive carbon which cannot provide capacity as the active material will decrease the energy density of batteries. The ultra-high cost of CNT comparing to conventional carbon black is also a problem. In this work, we are going to introduce ‘short length’ and ‘long length’ carbon nano-tube (S-CNT and L-CNT) into electrode in order to design a reduced-amount conductive carbon electrode. The whole experiment will be done in 1 Ah commercial type pouch LIB. By decreasing conductive carbon as well as increasing the active material in positive electrode, the energy density of LNCM-based 1Ah pouch type LIBs with only 0.16% of L-CNT inside LNCM positive electrode could reach 224 Wh/kg and 549 Wh/L, in weight and volume energy density, respectively. Also, this high energy density LIB with L-CNT reveals stable cyclability may become a valuable progress in portable devices and electric vehicle (EV) applications.</description><subject>Acetylene</subject><subject>Carbon black</subject><subject>Carbon nanotubes</subject><subject>CNT</subject><subject>Electric vehicles</subject><subject>Electrodes</subject><subject>Flux density</subject><subject>High energy density</subject><subject>Ionic conductivity</subject><subject>Li-ion pouch cell</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metal oxides</subject><subject>Portable equipment</subject><subject>Rechargeable batteries</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKu_wYDrqfmYSdJlEb9AcKPrkCZv2pQ2mSYZof56UypuhcCDcO59vIPQLSUzSqi438xgC7aY-maMsPrLJRXiDE2okrzhqpufowkhlDetUOISXeW8IYRIIckE7RfDsPXWFB9DxrHHzvc9JAgFBxNik_03OGxjcKMt_gvwzhRI3mwz9gGv_WqNIUBaHbCDkH054CGOdo3LYQC89WXtxx2u3XhpyjEI-Rpd9DUON79zij6fHj8eXpq39-fXh8VbY3nLS8O6uWJL2UuwToJkTvWtVI5K1UnRtablhCx7bs1cGsta0VkK3ZLxjgjKBOv4FN2deocU9yPkojdxTKGu1BVXXLFqoFLyRNkUc07Q6yH5nUkHTYk--tUb_edXH_3qk9-aXJySUI_48pB0th6CBedT5bWL_t-OHwnciTw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Tsai, Shan-Ho</creator><creator>Tsou, Yi-Lin</creator><creator>Yang, Chih-Wei</creator><creator>Chen, Tsan-Yao</creator><creator>Lee, Chi-Young</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20201201</creationdate><title>Applications of different nano-sized conductive materials in high energy density pouch type lithium ion batteries</title><author>Tsai, Shan-Ho ; Tsou, Yi-Lin ; Yang, Chih-Wei ; Chen, Tsan-Yao ; Lee, Chi-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-25982b7f7ecd7e72d8f478d17857654a4300bf3ca97ac2465c1e5b23506126253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylene</topic><topic>Carbon black</topic><topic>Carbon nanotubes</topic><topic>CNT</topic><topic>Electric vehicles</topic><topic>Electrodes</topic><topic>Flux density</topic><topic>High energy density</topic><topic>Ionic conductivity</topic><topic>Li-ion pouch cell</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metal oxides</topic><topic>Portable equipment</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Shan-Ho</creatorcontrib><creatorcontrib>Tsou, Yi-Lin</creatorcontrib><creatorcontrib>Yang, Chih-Wei</creatorcontrib><creatorcontrib>Chen, Tsan-Yao</creatorcontrib><creatorcontrib>Lee, Chi-Young</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Shan-Ho</au><au>Tsou, Yi-Lin</au><au>Yang, Chih-Wei</au><au>Chen, Tsan-Yao</au><au>Lee, Chi-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of different nano-sized conductive materials in high energy density pouch type lithium ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>362</volume><spage>137166</spage><pages>137166-</pages><artnum>137166</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Lots of lithium ion battery (LIB) products contain lithium metal oxide LiNi5Co2Mn3O2 (LNCM) as positive electrode active material. To increase the conductivity, conductive carbon-based materials including acetylene black and carbon black become necessarily consisted in electrodes. Recently, carbon nano-tube (CNT) appears as a popular choice for conductive carbon in LIB. However, a large quantity of the conductive carbon which cannot provide capacity as the active material will decrease the energy density of batteries. The ultra-high cost of CNT comparing to conventional carbon black is also a problem. In this work, we are going to introduce ‘short length’ and ‘long length’ carbon nano-tube (S-CNT and L-CNT) into electrode in order to design a reduced-amount conductive carbon electrode. The whole experiment will be done in 1 Ah commercial type pouch LIB. By decreasing conductive carbon as well as increasing the active material in positive electrode, the energy density of LNCM-based 1Ah pouch type LIBs with only 0.16% of L-CNT inside LNCM positive electrode could reach 224 Wh/kg and 549 Wh/L, in weight and volume energy density, respectively. Also, this high energy density LIB with L-CNT reveals stable cyclability may become a valuable progress in portable devices and electric vehicle (EV) applications.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137166</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2020-12, Vol.362, p.137166, Article 137166
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2468382767
source Elsevier
subjects Acetylene
Carbon black
Carbon nanotubes
CNT
Electric vehicles
Electrodes
Flux density
High energy density
Ionic conductivity
Li-ion pouch cell
Lithium
Lithium-ion batteries
Metal oxides
Portable equipment
Rechargeable batteries
title Applications of different nano-sized conductive materials in high energy density pouch type lithium ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20different%20nano-sized%20conductive%20materials%20in%20high%20energy%20density%20pouch%20type%20lithium%20ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Tsai,%20Shan-Ho&rft.date=2020-12-01&rft.volume=362&rft.spage=137166&rft.pages=137166-&rft.artnum=137166&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137166&rft_dat=%3Cproquest_cross%3E2468382767%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-25982b7f7ecd7e72d8f478d17857654a4300bf3ca97ac2465c1e5b23506126253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468382767&rft_id=info:pmid/&rfr_iscdi=true