Loading…

Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis

Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms like the Variational Quantum Eigensolver (VQE) as a potential route to practical quantum advantage in chemistry. However, it is not yet clear whether such algorithms, even in the absence of dev...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-08
Main Authors: Gonthier, Jérôme F, Radin, Maxwell D, Buda, Corneliu, Doskocil, Eric J, Abuan, Clena M, Romero, Jhonathan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gonthier, Jérôme F
Radin, Maxwell D
Buda, Corneliu
Doskocil, Eric J
Abuan, Clena M
Romero, Jhonathan
description Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms like the Variational Quantum Eigensolver (VQE) as a potential route to practical quantum advantage in chemistry. However, it is not yet clear whether such algorithms, even in the absence of device error, could actually achieve quantum advantage for systems of practical interest. We have performed an exhaustive analysis to estimate the number of qubits and number of measurements required to compute the combustion energies of small organic molecules and related systems to within chemical accuracy of experimental values using VQE. We consider several key modern improvements to VQE, including low-rank factorizations of the Hamiltonian. Our results indicate that although these techniques are useful, they will not be sufficient to achieve practical quantum computational advantage for our molecular set, or for similar molecules. This suggests that novel approaches to operator estimation leveraging quantum coherence, such as Enhanced Likelihood Functions [arxiv:2006.09350, arxiv:2006.09349], may be required.
doi_str_mv 10.48550/arxiv.2012.04001
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2468463380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468463380</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-cd945b00c3bd3ad879c64a6be489dc3a6ff3fce827f640cb30de8edbe1bcec963</originalsourceid><addsrcrecordid>eNotjstqwzAQRUWh0JDmA7oTdG13LMmy3F0JfUFKN9mHkTRunfqRSHJo_r6GBg7cs7ocxu4KyJUpS3jA8NuecgGFyEEBFFdsIaQsMqOEuGGrGPcAIHQlylIumP8gjFOgnoYUOc7wMKK33eh-eBr5QBiyRKHnh4AutQ47fpxwSFPP0Z9mwS_i7cDdN_VtTOH8yAPFcQqOOA7YnWMbb9l1g12k1WWXbPvyvF2_ZZvP1_f10ybDUkDmfK1KC-Ck9RK9qWqnFWpLytTeSdRNIxtHRlSNVuCsBE-GvKXCOnK1lkt2_397CONxoph2-7ljbog7obRRWkoD8g-FTFpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468463380</pqid></control><display><type>article</type><title>Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis</title><source>Publicly Available Content Database</source><creator>Gonthier, Jérôme F ; Radin, Maxwell D ; Buda, Corneliu ; Doskocil, Eric J ; Abuan, Clena M ; Romero, Jhonathan</creator><creatorcontrib>Gonthier, Jérôme F ; Radin, Maxwell D ; Buda, Corneliu ; Doskocil, Eric J ; Abuan, Clena M ; Romero, Jhonathan</creatorcontrib><description>Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms like the Variational Quantum Eigensolver (VQE) as a potential route to practical quantum advantage in chemistry. However, it is not yet clear whether such algorithms, even in the absence of device error, could actually achieve quantum advantage for systems of practical interest. We have performed an exhaustive analysis to estimate the number of qubits and number of measurements required to compute the combustion energies of small organic molecules and related systems to within chemical accuracy of experimental values using VQE. We consider several key modern improvements to VQE, including low-rank factorizations of the Hamiltonian. Our results indicate that although these techniques are useful, they will not be sufficient to achieve practical quantum computational advantage for our molecular set, or for similar molecules. This suggests that novel approaches to operator estimation leveraging quantum coherence, such as Enhanced Likelihood Functions [arxiv:2006.09350, arxiv:2006.09349], may be required.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2012.04001</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Coherence ; Combustion ; Computational chemistry ; Orbitals ; Organic chemistry ; Quantum phenomena ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2468463380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,27916,37003,44581</link.rule.ids></links><search><creatorcontrib>Gonthier, Jérôme F</creatorcontrib><creatorcontrib>Radin, Maxwell D</creatorcontrib><creatorcontrib>Buda, Corneliu</creatorcontrib><creatorcontrib>Doskocil, Eric J</creatorcontrib><creatorcontrib>Abuan, Clena M</creatorcontrib><creatorcontrib>Romero, Jhonathan</creatorcontrib><title>Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis</title><title>arXiv.org</title><description>Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms like the Variational Quantum Eigensolver (VQE) as a potential route to practical quantum advantage in chemistry. However, it is not yet clear whether such algorithms, even in the absence of device error, could actually achieve quantum advantage for systems of practical interest. We have performed an exhaustive analysis to estimate the number of qubits and number of measurements required to compute the combustion energies of small organic molecules and related systems to within chemical accuracy of experimental values using VQE. We consider several key modern improvements to VQE, including low-rank factorizations of the Hamiltonian. Our results indicate that although these techniques are useful, they will not be sufficient to achieve practical quantum computational advantage for our molecular set, or for similar molecules. This suggests that novel approaches to operator estimation leveraging quantum coherence, such as Enhanced Likelihood Functions [arxiv:2006.09350, arxiv:2006.09349], may be required.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Combustion</subject><subject>Computational chemistry</subject><subject>Orbitals</subject><subject>Organic chemistry</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAQRUWh0JDmA7oTdG13LMmy3F0JfUFKN9mHkTRunfqRSHJo_r6GBg7cs7ocxu4KyJUpS3jA8NuecgGFyEEBFFdsIaQsMqOEuGGrGPcAIHQlylIumP8gjFOgnoYUOc7wMKK33eh-eBr5QBiyRKHnh4AutQ47fpxwSFPP0Z9mwS_i7cDdN_VtTOH8yAPFcQqOOA7YnWMbb9l1g12k1WWXbPvyvF2_ZZvP1_f10ybDUkDmfK1KC-Ck9RK9qWqnFWpLytTeSdRNIxtHRlSNVuCsBE-GvKXCOnK1lkt2_397CONxoph2-7ljbog7obRRWkoD8g-FTFpI</recordid><startdate>20220826</startdate><enddate>20220826</enddate><creator>Gonthier, Jérôme F</creator><creator>Radin, Maxwell D</creator><creator>Buda, Corneliu</creator><creator>Doskocil, Eric J</creator><creator>Abuan, Clena M</creator><creator>Romero, Jhonathan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220826</creationdate><title>Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis</title><author>Gonthier, Jérôme F ; Radin, Maxwell D ; Buda, Corneliu ; Doskocil, Eric J ; Abuan, Clena M ; Romero, Jhonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-cd945b00c3bd3ad879c64a6be489dc3a6ff3fce827f640cb30de8edbe1bcec963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Combustion</topic><topic>Computational chemistry</topic><topic>Orbitals</topic><topic>Organic chemistry</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonthier, Jérôme F</creatorcontrib><creatorcontrib>Radin, Maxwell D</creatorcontrib><creatorcontrib>Buda, Corneliu</creatorcontrib><creatorcontrib>Doskocil, Eric J</creatorcontrib><creatorcontrib>Abuan, Clena M</creatorcontrib><creatorcontrib>Romero, Jhonathan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonthier, Jérôme F</au><au>Radin, Maxwell D</au><au>Buda, Corneliu</au><au>Doskocil, Eric J</au><au>Abuan, Clena M</au><au>Romero, Jhonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis</atitle><jtitle>arXiv.org</jtitle><date>2022-08-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms like the Variational Quantum Eigensolver (VQE) as a potential route to practical quantum advantage in chemistry. However, it is not yet clear whether such algorithms, even in the absence of device error, could actually achieve quantum advantage for systems of practical interest. We have performed an exhaustive analysis to estimate the number of qubits and number of measurements required to compute the combustion energies of small organic molecules and related systems to within chemical accuracy of experimental values using VQE. We consider several key modern improvements to VQE, including low-rank factorizations of the Hamiltonian. Our results indicate that although these techniques are useful, they will not be sufficient to achieve practical quantum computational advantage for our molecular set, or for similar molecules. This suggests that novel approaches to operator estimation leveraging quantum coherence, such as Enhanced Likelihood Functions [arxiv:2006.09350, arxiv:2006.09349], may be required.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2012.04001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2468463380
source Publicly Available Content Database
subjects Algorithms
Coherence
Combustion
Computational chemistry
Orbitals
Organic chemistry
Quantum phenomena
Qubits (quantum computing)
title Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurements%20as%20a%20roadblock%20to%20near-term%20practical%20quantum%20advantage%20in%20chemistry:%20resource%20analysis&rft.jtitle=arXiv.org&rft.au=Gonthier,%20J%C3%A9r%C3%B4me%20F&rft.date=2022-08-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2012.04001&rft_dat=%3Cproquest%3E2468463380%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-cd945b00c3bd3ad879c64a6be489dc3a6ff3fce827f640cb30de8edbe1bcec963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468463380&rft_id=info:pmid/&rfr_iscdi=true