Loading…
Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis
Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms like the Variational Quantum Eigensolver (VQE) as a potential route to practical quantum advantage in chemistry. However, it is not yet clear whether such algorithms, even in the absence of dev...
Saved in:
Published in: | arXiv.org 2022-08 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gonthier, Jérôme F Radin, Maxwell D Buda, Corneliu Doskocil, Eric J Abuan, Clena M Romero, Jhonathan |
description | Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms like the Variational Quantum Eigensolver (VQE) as a potential route to practical quantum advantage in chemistry. However, it is not yet clear whether such algorithms, even in the absence of device error, could actually achieve quantum advantage for systems of practical interest. We have performed an exhaustive analysis to estimate the number of qubits and number of measurements required to compute the combustion energies of small organic molecules and related systems to within chemical accuracy of experimental values using VQE. We consider several key modern improvements to VQE, including low-rank factorizations of the Hamiltonian. Our results indicate that although these techniques are useful, they will not be sufficient to achieve practical quantum computational advantage for our molecular set, or for similar molecules. This suggests that novel approaches to operator estimation leveraging quantum coherence, such as Enhanced Likelihood Functions [arxiv:2006.09350, arxiv:2006.09349], may be required. |
doi_str_mv | 10.48550/arxiv.2012.04001 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2468463380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468463380</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-cd945b00c3bd3ad879c64a6be489dc3a6ff3fce827f640cb30de8edbe1bcec963</originalsourceid><addsrcrecordid>eNotjstqwzAQRUWh0JDmA7oTdG13LMmy3F0JfUFKN9mHkTRunfqRSHJo_r6GBg7cs7ocxu4KyJUpS3jA8NuecgGFyEEBFFdsIaQsMqOEuGGrGPcAIHQlylIumP8gjFOgnoYUOc7wMKK33eh-eBr5QBiyRKHnh4AutQ47fpxwSFPP0Z9mwS_i7cDdN_VtTOH8yAPFcQqOOA7YnWMbb9l1g12k1WWXbPvyvF2_ZZvP1_f10ybDUkDmfK1KC-Ck9RK9qWqnFWpLytTeSdRNIxtHRlSNVuCsBE-GvKXCOnK1lkt2_397CONxoph2-7ljbog7obRRWkoD8g-FTFpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468463380</pqid></control><display><type>article</type><title>Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis</title><source>Publicly Available Content Database</source><creator>Gonthier, Jérôme F ; Radin, Maxwell D ; Buda, Corneliu ; Doskocil, Eric J ; Abuan, Clena M ; Romero, Jhonathan</creator><creatorcontrib>Gonthier, Jérôme F ; Radin, Maxwell D ; Buda, Corneliu ; Doskocil, Eric J ; Abuan, Clena M ; Romero, Jhonathan</creatorcontrib><description>Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms like the Variational Quantum Eigensolver (VQE) as a potential route to practical quantum advantage in chemistry. However, it is not yet clear whether such algorithms, even in the absence of device error, could actually achieve quantum advantage for systems of practical interest. We have performed an exhaustive analysis to estimate the number of qubits and number of measurements required to compute the combustion energies of small organic molecules and related systems to within chemical accuracy of experimental values using VQE. We consider several key modern improvements to VQE, including low-rank factorizations of the Hamiltonian. Our results indicate that although these techniques are useful, they will not be sufficient to achieve practical quantum computational advantage for our molecular set, or for similar molecules. This suggests that novel approaches to operator estimation leveraging quantum coherence, such as Enhanced Likelihood Functions [arxiv:2006.09350, arxiv:2006.09349], may be required.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2012.04001</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Coherence ; Combustion ; Computational chemistry ; Orbitals ; Organic chemistry ; Quantum phenomena ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2468463380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,27916,37003,44581</link.rule.ids></links><search><creatorcontrib>Gonthier, Jérôme F</creatorcontrib><creatorcontrib>Radin, Maxwell D</creatorcontrib><creatorcontrib>Buda, Corneliu</creatorcontrib><creatorcontrib>Doskocil, Eric J</creatorcontrib><creatorcontrib>Abuan, Clena M</creatorcontrib><creatorcontrib>Romero, Jhonathan</creatorcontrib><title>Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis</title><title>arXiv.org</title><description>Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms like the Variational Quantum Eigensolver (VQE) as a potential route to practical quantum advantage in chemistry. However, it is not yet clear whether such algorithms, even in the absence of device error, could actually achieve quantum advantage for systems of practical interest. We have performed an exhaustive analysis to estimate the number of qubits and number of measurements required to compute the combustion energies of small organic molecules and related systems to within chemical accuracy of experimental values using VQE. We consider several key modern improvements to VQE, including low-rank factorizations of the Hamiltonian. Our results indicate that although these techniques are useful, they will not be sufficient to achieve practical quantum computational advantage for our molecular set, or for similar molecules. This suggests that novel approaches to operator estimation leveraging quantum coherence, such as Enhanced Likelihood Functions [arxiv:2006.09350, arxiv:2006.09349], may be required.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Combustion</subject><subject>Computational chemistry</subject><subject>Orbitals</subject><subject>Organic chemistry</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAQRUWh0JDmA7oTdG13LMmy3F0JfUFKN9mHkTRunfqRSHJo_r6GBg7cs7ocxu4KyJUpS3jA8NuecgGFyEEBFFdsIaQsMqOEuGGrGPcAIHQlylIumP8gjFOgnoYUOc7wMKK33eh-eBr5QBiyRKHnh4AutQ47fpxwSFPP0Z9mwS_i7cDdN_VtTOH8yAPFcQqOOA7YnWMbb9l1g12k1WWXbPvyvF2_ZZvP1_f10ybDUkDmfK1KC-Ck9RK9qWqnFWpLytTeSdRNIxtHRlSNVuCsBE-GvKXCOnK1lkt2_397CONxoph2-7ljbog7obRRWkoD8g-FTFpI</recordid><startdate>20220826</startdate><enddate>20220826</enddate><creator>Gonthier, Jérôme F</creator><creator>Radin, Maxwell D</creator><creator>Buda, Corneliu</creator><creator>Doskocil, Eric J</creator><creator>Abuan, Clena M</creator><creator>Romero, Jhonathan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220826</creationdate><title>Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis</title><author>Gonthier, Jérôme F ; Radin, Maxwell D ; Buda, Corneliu ; Doskocil, Eric J ; Abuan, Clena M ; Romero, Jhonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-cd945b00c3bd3ad879c64a6be489dc3a6ff3fce827f640cb30de8edbe1bcec963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Combustion</topic><topic>Computational chemistry</topic><topic>Orbitals</topic><topic>Organic chemistry</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonthier, Jérôme F</creatorcontrib><creatorcontrib>Radin, Maxwell D</creatorcontrib><creatorcontrib>Buda, Corneliu</creatorcontrib><creatorcontrib>Doskocil, Eric J</creatorcontrib><creatorcontrib>Abuan, Clena M</creatorcontrib><creatorcontrib>Romero, Jhonathan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonthier, Jérôme F</au><au>Radin, Maxwell D</au><au>Buda, Corneliu</au><au>Doskocil, Eric J</au><au>Abuan, Clena M</au><au>Romero, Jhonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis</atitle><jtitle>arXiv.org</jtitle><date>2022-08-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms like the Variational Quantum Eigensolver (VQE) as a potential route to practical quantum advantage in chemistry. However, it is not yet clear whether such algorithms, even in the absence of device error, could actually achieve quantum advantage for systems of practical interest. We have performed an exhaustive analysis to estimate the number of qubits and number of measurements required to compute the combustion energies of small organic molecules and related systems to within chemical accuracy of experimental values using VQE. We consider several key modern improvements to VQE, including low-rank factorizations of the Hamiltonian. Our results indicate that although these techniques are useful, they will not be sufficient to achieve practical quantum computational advantage for our molecular set, or for similar molecules. This suggests that novel approaches to operator estimation leveraging quantum coherence, such as Enhanced Likelihood Functions [arxiv:2006.09350, arxiv:2006.09349], may be required.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2012.04001</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2468463380 |
source | Publicly Available Content Database |
subjects | Algorithms Coherence Combustion Computational chemistry Orbitals Organic chemistry Quantum phenomena Qubits (quantum computing) |
title | Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurements%20as%20a%20roadblock%20to%20near-term%20practical%20quantum%20advantage%20in%20chemistry:%20resource%20analysis&rft.jtitle=arXiv.org&rft.au=Gonthier,%20J%C3%A9r%C3%B4me%20F&rft.date=2022-08-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2012.04001&rft_dat=%3Cproquest%3E2468463380%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-cd945b00c3bd3ad879c64a6be489dc3a6ff3fce827f640cb30de8edbe1bcec963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468463380&rft_id=info:pmid/&rfr_iscdi=true |