Loading…

Adaptive Cooperative Control With Guaranteed Convergence in Time-Varying Networks of Nonlinear Dynamical Systems

In this paper, we investigate the adaptive cooperative control problem with guaranteed convergence for a class of nonlinear multiagent systems with unknown control directions and time-varying topologies. A key lemma is first derived which involves dynamically changing interaction topologies, and the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2020-12, Vol.50 (12), p.5035-5046
Main Authors: Wang, Qingling, Psillakis, Haris E., Sun, Changyin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-bb0b4ccae2da102a4ad5d3af22cb655e84e73289521d660bdce0a32ee563c6173
cites cdi_FETCH-LOGICAL-c349t-bb0b4ccae2da102a4ad5d3af22cb655e84e73289521d660bdce0a32ee563c6173
container_end_page 5046
container_issue 12
container_start_page 5035
container_title IEEE transactions on cybernetics
container_volume 50
creator Wang, Qingling
Psillakis, Haris E.
Sun, Changyin
description In this paper, we investigate the adaptive cooperative control problem with guaranteed convergence for a class of nonlinear multiagent systems with unknown control directions and time-varying topologies. A key lemma is first derived which involves dynamically changing interaction topologies, and then a new kind of distributed control algorithms with Nussbaum-type functions are proposed based on this lemma. It is proven that if the topologies are time varying with integral weight uniform upper bound and reciprocity, then convergence is guaranteed with the proposed algorithms for nonlinear multiagent systems with nonidentical unknown control directions. An important feature of this paper is that, under time-varying topologies, the designed algorithms can deal with nonidentical unknown control directions by using classical Nussbaum-type functions. Moreover, with the proposed algorithms, we extend the adaptive cooperative control results to the case of \delta -connected graphs. In particular, the adaptive leaderless consensus of high-order nonlinear agents with nonidentical unknown control directions and a directed graph having a spanning tree is also tackled as a special case. Finally, theoretical results are illustrated by a group of Genesio-Tesi systems with distributed control algorithms under time-varying topologies and some special network topologies.
doi_str_mv 10.1109/TCYB.2019.2916563
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468752717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8728163</ieee_id><sourcerecordid>2468752717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-bb0b4ccae2da102a4ad5d3af22cb655e84e73289521d660bdce0a32ee563c6173</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qqCDYH1BVqiz1wiWLPxInOcICC9JqOXQL6slynFlqSOxgJ6D99zjdZQ_4MuPxM6888yL0nZIppaQ8W83-XkwZoeWUlVRkgn9BR4yKImEsz77uc5EfokkITySeIpbK4hs65JTm8Vocoe68Vl1vXgHPnOvAq11ue-8a_GD6f3g-KK9sD1CP9Vfwj2A1YGPxyrSQ3Cu_MfYRL6F_c_45YLfGS2cbY0F5fLmxqjVaNfj3JvTQhhN0sFZNgMkuHqM_11er2U2yuJvfzs4XieZp2SdVRapUawWsVpQwlao6q7laM6YrkWVQpJBzVpQZo7UQpKo1EMUZQFyEFjTnx-h0q9t59zJA6GVrgoamURbcECTjKSG8LMmI_vqEPrnB2_g7yVJR5BnL_wvSLaW9C8HDWnbetHF4SYkcHZGjI3J0RO4ciT0_d8pD1UK97_jYfwR-bAEDAPvnImfRKs7fAR8QkC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468752717</pqid></control><display><type>article</type><title>Adaptive Cooperative Control With Guaranteed Convergence in Time-Varying Networks of Nonlinear Dynamical Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Qingling ; Psillakis, Haris E. ; Sun, Changyin</creator><creatorcontrib>Wang, Qingling ; Psillakis, Haris E. ; Sun, Changyin</creatorcontrib><description>In this paper, we investigate the adaptive cooperative control problem with guaranteed convergence for a class of nonlinear multiagent systems with unknown control directions and time-varying topologies. A key lemma is first derived which involves dynamically changing interaction topologies, and then a new kind of distributed control algorithms with Nussbaum-type functions are proposed based on this lemma. It is proven that if the topologies are time varying with integral weight uniform upper bound and reciprocity, then convergence is guaranteed with the proposed algorithms for nonlinear multiagent systems with nonidentical unknown control directions. An important feature of this paper is that, under time-varying topologies, the designed algorithms can deal with nonidentical unknown control directions by using classical Nussbaum-type functions. Moreover, with the proposed algorithms, we extend the adaptive cooperative control results to the case of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\delta &lt;/tex-math&gt;&lt;/inline-formula&gt;-connected graphs. In particular, the adaptive leaderless consensus of high-order nonlinear agents with nonidentical unknown control directions and a directed graph having a spanning tree is also tackled as a special case. Finally, theoretical results are illustrated by a group of Genesio-Tesi systems with distributed control algorithms under time-varying topologies and some special network topologies.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2019.2916563</identifier><identifier>PMID: 31170088</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive algorithms ; Adaptive control ; Control algorithms ; Control systems ; Convergence ; Cooperative control ; Graph theory ; Multi-agent systems ; Multiagent systems ; Network topologies ; Network topology ; Nonlinear agents ; Nonlinear systems ; Nussbaum-type function ; Reciprocity ; Time-varying systems ; time-varying topologies ; Topology ; unknown control directions ; Upper bounds</subject><ispartof>IEEE transactions on cybernetics, 2020-12, Vol.50 (12), p.5035-5046</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-bb0b4ccae2da102a4ad5d3af22cb655e84e73289521d660bdce0a32ee563c6173</citedby><cites>FETCH-LOGICAL-c349t-bb0b4ccae2da102a4ad5d3af22cb655e84e73289521d660bdce0a32ee563c6173</cites><orcidid>0000-0003-2019-6955 ; 0000-0001-9269-334X ; 0000-0003-2045-2920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8728163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31170088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qingling</creatorcontrib><creatorcontrib>Psillakis, Haris E.</creatorcontrib><creatorcontrib>Sun, Changyin</creatorcontrib><title>Adaptive Cooperative Control With Guaranteed Convergence in Time-Varying Networks of Nonlinear Dynamical Systems</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>In this paper, we investigate the adaptive cooperative control problem with guaranteed convergence for a class of nonlinear multiagent systems with unknown control directions and time-varying topologies. A key lemma is first derived which involves dynamically changing interaction topologies, and then a new kind of distributed control algorithms with Nussbaum-type functions are proposed based on this lemma. It is proven that if the topologies are time varying with integral weight uniform upper bound and reciprocity, then convergence is guaranteed with the proposed algorithms for nonlinear multiagent systems with nonidentical unknown control directions. An important feature of this paper is that, under time-varying topologies, the designed algorithms can deal with nonidentical unknown control directions by using classical Nussbaum-type functions. Moreover, with the proposed algorithms, we extend the adaptive cooperative control results to the case of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\delta &lt;/tex-math&gt;&lt;/inline-formula&gt;-connected graphs. In particular, the adaptive leaderless consensus of high-order nonlinear agents with nonidentical unknown control directions and a directed graph having a spanning tree is also tackled as a special case. Finally, theoretical results are illustrated by a group of Genesio-Tesi systems with distributed control algorithms under time-varying topologies and some special network topologies.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Control algorithms</subject><subject>Control systems</subject><subject>Convergence</subject><subject>Cooperative control</subject><subject>Graph theory</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Network topologies</subject><subject>Network topology</subject><subject>Nonlinear agents</subject><subject>Nonlinear systems</subject><subject>Nussbaum-type function</subject><subject>Reciprocity</subject><subject>Time-varying systems</subject><subject>time-varying topologies</subject><subject>Topology</subject><subject>unknown control directions</subject><subject>Upper bounds</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1P3DAQhq2qqCDYH1BVqiz1wiWLPxInOcICC9JqOXQL6slynFlqSOxgJ6D99zjdZQ_4MuPxM6888yL0nZIppaQ8W83-XkwZoeWUlVRkgn9BR4yKImEsz77uc5EfokkITySeIpbK4hs65JTm8Vocoe68Vl1vXgHPnOvAq11ue-8a_GD6f3g-KK9sD1CP9Vfwj2A1YGPxyrSQ3Cu_MfYRL6F_c_45YLfGS2cbY0F5fLmxqjVaNfj3JvTQhhN0sFZNgMkuHqM_11er2U2yuJvfzs4XieZp2SdVRapUawWsVpQwlao6q7laM6YrkWVQpJBzVpQZo7UQpKo1EMUZQFyEFjTnx-h0q9t59zJA6GVrgoamURbcECTjKSG8LMmI_vqEPrnB2_g7yVJR5BnL_wvSLaW9C8HDWnbetHF4SYkcHZGjI3J0RO4ciT0_d8pD1UK97_jYfwR-bAEDAPvnImfRKs7fAR8QkC8</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Wang, Qingling</creator><creator>Psillakis, Haris E.</creator><creator>Sun, Changyin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2019-6955</orcidid><orcidid>https://orcid.org/0000-0001-9269-334X</orcidid><orcidid>https://orcid.org/0000-0003-2045-2920</orcidid></search><sort><creationdate>20201201</creationdate><title>Adaptive Cooperative Control With Guaranteed Convergence in Time-Varying Networks of Nonlinear Dynamical Systems</title><author>Wang, Qingling ; Psillakis, Haris E. ; Sun, Changyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-bb0b4ccae2da102a4ad5d3af22cb655e84e73289521d660bdce0a32ee563c6173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Control algorithms</topic><topic>Control systems</topic><topic>Convergence</topic><topic>Cooperative control</topic><topic>Graph theory</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Network topologies</topic><topic>Network topology</topic><topic>Nonlinear agents</topic><topic>Nonlinear systems</topic><topic>Nussbaum-type function</topic><topic>Reciprocity</topic><topic>Time-varying systems</topic><topic>time-varying topologies</topic><topic>Topology</topic><topic>unknown control directions</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qingling</creatorcontrib><creatorcontrib>Psillakis, Haris E.</creatorcontrib><creatorcontrib>Sun, Changyin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qingling</au><au>Psillakis, Haris E.</au><au>Sun, Changyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Cooperative Control With Guaranteed Convergence in Time-Varying Networks of Nonlinear Dynamical Systems</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>50</volume><issue>12</issue><spage>5035</spage><epage>5046</epage><pages>5035-5046</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>In this paper, we investigate the adaptive cooperative control problem with guaranteed convergence for a class of nonlinear multiagent systems with unknown control directions and time-varying topologies. A key lemma is first derived which involves dynamically changing interaction topologies, and then a new kind of distributed control algorithms with Nussbaum-type functions are proposed based on this lemma. It is proven that if the topologies are time varying with integral weight uniform upper bound and reciprocity, then convergence is guaranteed with the proposed algorithms for nonlinear multiagent systems with nonidentical unknown control directions. An important feature of this paper is that, under time-varying topologies, the designed algorithms can deal with nonidentical unknown control directions by using classical Nussbaum-type functions. Moreover, with the proposed algorithms, we extend the adaptive cooperative control results to the case of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\delta &lt;/tex-math&gt;&lt;/inline-formula&gt;-connected graphs. In particular, the adaptive leaderless consensus of high-order nonlinear agents with nonidentical unknown control directions and a directed graph having a spanning tree is also tackled as a special case. Finally, theoretical results are illustrated by a group of Genesio-Tesi systems with distributed control algorithms under time-varying topologies and some special network topologies.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31170088</pmid><doi>10.1109/TCYB.2019.2916563</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2019-6955</orcidid><orcidid>https://orcid.org/0000-0001-9269-334X</orcidid><orcidid>https://orcid.org/0000-0003-2045-2920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2020-12, Vol.50 (12), p.5035-5046
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_2468752717
source IEEE Electronic Library (IEL) Journals
subjects Adaptive algorithms
Adaptive control
Control algorithms
Control systems
Convergence
Cooperative control
Graph theory
Multi-agent systems
Multiagent systems
Network topologies
Network topology
Nonlinear agents
Nonlinear systems
Nussbaum-type function
Reciprocity
Time-varying systems
time-varying topologies
Topology
unknown control directions
Upper bounds
title Adaptive Cooperative Control With Guaranteed Convergence in Time-Varying Networks of Nonlinear Dynamical Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Cooperative%20Control%20With%20Guaranteed%20Convergence%20in%20Time-Varying%20Networks%20of%20Nonlinear%20Dynamical%20Systems&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Wang,%20Qingling&rft.date=2020-12-01&rft.volume=50&rft.issue=12&rft.spage=5035&rft.epage=5046&rft.pages=5035-5046&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2019.2916563&rft_dat=%3Cproquest_cross%3E2468752717%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-bb0b4ccae2da102a4ad5d3af22cb655e84e73289521d660bdce0a32ee563c6173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468752717&rft_id=info:pmid/31170088&rft_ieee_id=8728163&rfr_iscdi=true