Loading…
Magnetic Field Transport in Propagating Thermonuclear Burn
High energy gain in inertial fusion schemes requires the propagation of a thermonuclear burn wave from hot to cold fuel. We consider the problem of burn propagation when a magnetic field is orthogonal to the burn wave. Using an extended-MHD model with a magnetized \(\alpha\) energy transport equatio...
Saved in:
Published in: | arXiv.org 2020-12 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Appelbe, B Velikovich, A L Sherlock, M Walsh, C A Crilly, A J Neill, S O Chittenden, J P |
description | High energy gain in inertial fusion schemes requires the propagation of a thermonuclear burn wave from hot to cold fuel. We consider the problem of burn propagation when a magnetic field is orthogonal to the burn wave. Using an extended-MHD model with a magnetized \(\alpha\) energy transport equation we find that the magnetic field can reduce the rate of burn propagation by suppressing electron thermal conduction and \(\alpha\) particle flux. Magnetic field transport during burn propagation is subject to competing effects: field can be advected from cold to hot regions by ablation of cold fuel, while the Nernst and \(\alpha\) particle flux effects transport field from hot to cold fuel. These effects, combined with the temperature increase due to burn, can cause the electron Hall parameter to grow rapidly at the burn front. This results in the formation of a self-insulating layer between hot and cold fuel that reduces electron thermal conductivity and \(\alpha\) transport, increases the temperature gradient and reduces the rate of burn propagation. |
doi_str_mv | 10.48550/arxiv.2012.05280 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2469447434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469447434</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-5fdb11ed3021d8082f2328b6a7a84d86104c1206c15048fe21fd86b6cde7d8d23</originalsourceid><addsrcrecordid>eNotjUFLwzAYQIMgOOZ-wG4Bz61fvnxJozcdToWJO_Q-0iStHTWtaSv-fAt6evAO7zG2FZCTUQpubfppv3MEgTkoNHDBViilyAwhXrHNOJ4BAHWBSskVu3-zTQxT6_i-DZ3nZbJxHPo08TbyY-oH29ipjQ0vP0L67OPsumATf5xTvGaXte3GsPnnmpX7p3L3kh3en193D4fMKqRM1b4SIngJKLwBgzVKNJW2hTXkjRZATiBoJxSQqQOKerGVdj4U3niUa3bzlx1S_zWHcTqd--W-HE9I-o6oIEnyFzVCSCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469447434</pqid></control><display><type>article</type><title>Magnetic Field Transport in Propagating Thermonuclear Burn</title><source>Publicly Available Content (ProQuest)</source><creator>Appelbe, B ; Velikovich, A L ; Sherlock, M ; Walsh, C A ; Crilly, A J ; Neill, S O ; Chittenden, J P</creator><creatorcontrib>Appelbe, B ; Velikovich, A L ; Sherlock, M ; Walsh, C A ; Crilly, A J ; Neill, S O ; Chittenden, J P</creatorcontrib><description>High energy gain in inertial fusion schemes requires the propagation of a thermonuclear burn wave from hot to cold fuel. We consider the problem of burn propagation when a magnetic field is orthogonal to the burn wave. Using an extended-MHD model with a magnetized \(\alpha\) energy transport equation we find that the magnetic field can reduce the rate of burn propagation by suppressing electron thermal conduction and \(\alpha\) particle flux. Magnetic field transport during burn propagation is subject to competing effects: field can be advected from cold to hot regions by ablation of cold fuel, while the Nernst and \(\alpha\) particle flux effects transport field from hot to cold fuel. These effects, combined with the temperature increase due to burn, can cause the electron Hall parameter to grow rapidly at the burn front. This results in the formation of a self-insulating layer between hot and cold fuel that reduces electron thermal conductivity and \(\alpha\) transport, increases the temperature gradient and reduces the rate of burn propagation.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2012.05280</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Alpha rays ; Cold ; Electrons ; Fuels ; Inertial fusion (reactor) ; Magnetic fields ; Magnetic flux ; Nuclear fuels ; Propagation ; Temperature gradients ; Thermal conductivity ; Transport equations ; Wave propagation</subject><ispartof>arXiv.org, 2020-12</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2469447434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Appelbe, B</creatorcontrib><creatorcontrib>Velikovich, A L</creatorcontrib><creatorcontrib>Sherlock, M</creatorcontrib><creatorcontrib>Walsh, C A</creatorcontrib><creatorcontrib>Crilly, A J</creatorcontrib><creatorcontrib>Neill, S O</creatorcontrib><creatorcontrib>Chittenden, J P</creatorcontrib><title>Magnetic Field Transport in Propagating Thermonuclear Burn</title><title>arXiv.org</title><description>High energy gain in inertial fusion schemes requires the propagation of a thermonuclear burn wave from hot to cold fuel. We consider the problem of burn propagation when a magnetic field is orthogonal to the burn wave. Using an extended-MHD model with a magnetized \(\alpha\) energy transport equation we find that the magnetic field can reduce the rate of burn propagation by suppressing electron thermal conduction and \(\alpha\) particle flux. Magnetic field transport during burn propagation is subject to competing effects: field can be advected from cold to hot regions by ablation of cold fuel, while the Nernst and \(\alpha\) particle flux effects transport field from hot to cold fuel. These effects, combined with the temperature increase due to burn, can cause the electron Hall parameter to grow rapidly at the burn front. This results in the formation of a self-insulating layer between hot and cold fuel that reduces electron thermal conductivity and \(\alpha\) transport, increases the temperature gradient and reduces the rate of burn propagation.</description><subject>Ablation</subject><subject>Alpha rays</subject><subject>Cold</subject><subject>Electrons</subject><subject>Fuels</subject><subject>Inertial fusion (reactor)</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Nuclear fuels</subject><subject>Propagation</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Transport equations</subject><subject>Wave propagation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUFLwzAYQIMgOOZ-wG4Bz61fvnxJozcdToWJO_Q-0iStHTWtaSv-fAt6evAO7zG2FZCTUQpubfppv3MEgTkoNHDBViilyAwhXrHNOJ4BAHWBSskVu3-zTQxT6_i-DZ3nZbJxHPo08TbyY-oH29ipjQ0vP0L67OPsumATf5xTvGaXte3GsPnnmpX7p3L3kh3en193D4fMKqRM1b4SIngJKLwBgzVKNJW2hTXkjRZATiBoJxSQqQOKerGVdj4U3niUa3bzlx1S_zWHcTqd--W-HE9I-o6oIEnyFzVCSCk</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Appelbe, B</creator><creator>Velikovich, A L</creator><creator>Sherlock, M</creator><creator>Walsh, C A</creator><creator>Crilly, A J</creator><creator>Neill, S O</creator><creator>Chittenden, J P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201209</creationdate><title>Magnetic Field Transport in Propagating Thermonuclear Burn</title><author>Appelbe, B ; Velikovich, A L ; Sherlock, M ; Walsh, C A ; Crilly, A J ; Neill, S O ; Chittenden, J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-5fdb11ed3021d8082f2328b6a7a84d86104c1206c15048fe21fd86b6cde7d8d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Alpha rays</topic><topic>Cold</topic><topic>Electrons</topic><topic>Fuels</topic><topic>Inertial fusion (reactor)</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Nuclear fuels</topic><topic>Propagation</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Transport equations</topic><topic>Wave propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Appelbe, B</creatorcontrib><creatorcontrib>Velikovich, A L</creatorcontrib><creatorcontrib>Sherlock, M</creatorcontrib><creatorcontrib>Walsh, C A</creatorcontrib><creatorcontrib>Crilly, A J</creatorcontrib><creatorcontrib>Neill, S O</creatorcontrib><creatorcontrib>Chittenden, J P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Appelbe, B</au><au>Velikovich, A L</au><au>Sherlock, M</au><au>Walsh, C A</au><au>Crilly, A J</au><au>Neill, S O</au><au>Chittenden, J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Field Transport in Propagating Thermonuclear Burn</atitle><jtitle>arXiv.org</jtitle><date>2020-12-09</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>High energy gain in inertial fusion schemes requires the propagation of a thermonuclear burn wave from hot to cold fuel. We consider the problem of burn propagation when a magnetic field is orthogonal to the burn wave. Using an extended-MHD model with a magnetized \(\alpha\) energy transport equation we find that the magnetic field can reduce the rate of burn propagation by suppressing electron thermal conduction and \(\alpha\) particle flux. Magnetic field transport during burn propagation is subject to competing effects: field can be advected from cold to hot regions by ablation of cold fuel, while the Nernst and \(\alpha\) particle flux effects transport field from hot to cold fuel. These effects, combined with the temperature increase due to burn, can cause the electron Hall parameter to grow rapidly at the burn front. This results in the formation of a self-insulating layer between hot and cold fuel that reduces electron thermal conductivity and \(\alpha\) transport, increases the temperature gradient and reduces the rate of burn propagation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2012.05280</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2469447434 |
source | Publicly Available Content (ProQuest) |
subjects | Ablation Alpha rays Cold Electrons Fuels Inertial fusion (reactor) Magnetic fields Magnetic flux Nuclear fuels Propagation Temperature gradients Thermal conductivity Transport equations Wave propagation |
title | Magnetic Field Transport in Propagating Thermonuclear Burn |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Field%20Transport%20in%20Propagating%20Thermonuclear%20Burn&rft.jtitle=arXiv.org&rft.au=Appelbe,%20B&rft.date=2020-12-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2012.05280&rft_dat=%3Cproquest%3E2469447434%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-5fdb11ed3021d8082f2328b6a7a84d86104c1206c15048fe21fd86b6cde7d8d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469447434&rft_id=info:pmid/&rfr_iscdi=true |