Loading…
A Hybrid Prediction Model for Energy-Efficient Data Collection in Wireless Sensor Networks
Energy consumption because of unnecessary data transmission is a significant problem over wireless sensor networks (WSNs). Dealing with this problem leads to increasing the lifetime of any network and improved network feasibility for real time applications. Building on this, energy-efficient data co...
Saved in:
Published in: | Symmetry (Basel) 2020-12, Vol.12 (12), p.2024 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c298t-33c23236c17a1a57b89e83e5bb59ad81ac8fec93f1e8233600137257008d7d2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c298t-33c23236c17a1a57b89e83e5bb59ad81ac8fec93f1e8233600137257008d7d2f3 |
container_end_page | |
container_issue | 12 |
container_start_page | 2024 |
container_title | Symmetry (Basel) |
container_volume | 12 |
creator | Soleymani, Seyed Ahmad Goudarzi, Shidrokh Kama, Nazri Adli Ismail, Saiful Ali, Mazlan MD Zainal, Zaini Zareei, Mahdi |
description | Energy consumption because of unnecessary data transmission is a significant problem over wireless sensor networks (WSNs). Dealing with this problem leads to increasing the lifetime of any network and improved network feasibility for real time applications. Building on this, energy-efficient data collection is becoming a necessary requirement for WSN applications comprising of low powered sensing devices. In these applications, data clustering and prediction methods that utilize symmetry correlations in the sensor data can be used for reducing the energy consumption of sensor nodes for persistent data collection. In this work, a hybrid model based on decision tree (DT), autoregressive integrated moving average (ARIMA), and Kalman filtering (KF) methods is proposed to predict the data sampling requirement of sensor nodes to reduce unnecessary data transmission. To perform data sampling predictions in the WSNs efficiently, clustering and data aggregation to each cluster head are utilized, mainly to reduce the processing overheads generating the prediction model. Simulation experiments, comparisons, and performance evaluations conducted in various cases show that the forecasting accuracy of our approach can outperform existing Gaussian and probabilistic based models to provide better energy efficiency due to reducing the number of packet transmissions. |
doi_str_mv | 10.3390/sym12122024 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469476832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469476832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-33c23236c17a1a57b89e83e5bb59ad81ac8fec93f1e8233600137257008d7d2f3</originalsourceid><addsrcrecordid>eNpNUEtLAzEYDKJgqT35BwIeZTXJt4_kWGq1Qn2AiuBlyWa_SOp2U5Mtsv_elfXQucwc5gFDyDlnVwCKXcd-ywUXgon0iEwEKyCRSqXHB_qUzGLcsAEZy9KcTcjHnK76KriaPgesnemcb-mDr7Gh1ge6bDF89snSWmccth290Z2mC980OFpdS99dwAZjpC_YxiHziN2PD1_xjJxY3USc_fOUvN0uXxerZP10d7-YrxMjlOwSACNAQG54obnOikoqlIBZVWVK15JrIy0aBZajFAA5YxwKkRWMybqohYUpuRh7d8F_7zF25cbvQztMliLNVVrkcuifksvRZYKPMaAtd8FtdehLzsq__8qD_-AXS31h1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469476832</pqid></control><display><type>article</type><title>A Hybrid Prediction Model for Energy-Efficient Data Collection in Wireless Sensor Networks</title><source>Publicly Available Content Database</source><creator>Soleymani, Seyed Ahmad ; Goudarzi, Shidrokh ; Kama, Nazri ; Adli Ismail, Saiful ; Ali, Mazlan ; MD Zainal, Zaini ; Zareei, Mahdi</creator><creatorcontrib>Soleymani, Seyed Ahmad ; Goudarzi, Shidrokh ; Kama, Nazri ; Adli Ismail, Saiful ; Ali, Mazlan ; MD Zainal, Zaini ; Zareei, Mahdi</creatorcontrib><description>Energy consumption because of unnecessary data transmission is a significant problem over wireless sensor networks (WSNs). Dealing with this problem leads to increasing the lifetime of any network and improved network feasibility for real time applications. Building on this, energy-efficient data collection is becoming a necessary requirement for WSN applications comprising of low powered sensing devices. In these applications, data clustering and prediction methods that utilize symmetry correlations in the sensor data can be used for reducing the energy consumption of sensor nodes for persistent data collection. In this work, a hybrid model based on decision tree (DT), autoregressive integrated moving average (ARIMA), and Kalman filtering (KF) methods is proposed to predict the data sampling requirement of sensor nodes to reduce unnecessary data transmission. To perform data sampling predictions in the WSNs efficiently, clustering and data aggregation to each cluster head are utilized, mainly to reduce the processing overheads generating the prediction model. Simulation experiments, comparisons, and performance evaluations conducted in various cases show that the forecasting accuracy of our approach can outperform existing Gaussian and probabilistic based models to provide better energy efficiency due to reducing the number of packet transmissions.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym12122024</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Autoregressive models ; Clustering ; Communication ; Data collection ; Data management ; Data sampling ; Data transmission ; Decision trees ; Electronic devices ; Energy consumption ; Gaussian distribution ; Kalman filters ; Methods ; Nodes ; Packet transmission ; Performance evaluation ; Prediction models ; Sensors ; Statistical analysis ; Time series ; Wireless networks ; Wireless sensor networks</subject><ispartof>Symmetry (Basel), 2020-12, Vol.12 (12), p.2024</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-33c23236c17a1a57b89e83e5bb59ad81ac8fec93f1e8233600137257008d7d2f3</citedby><cites>FETCH-LOGICAL-c298t-33c23236c17a1a57b89e83e5bb59ad81ac8fec93f1e8233600137257008d7d2f3</cites><orcidid>0000-0002-9299-5652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2469476832/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2469476832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Soleymani, Seyed Ahmad</creatorcontrib><creatorcontrib>Goudarzi, Shidrokh</creatorcontrib><creatorcontrib>Kama, Nazri</creatorcontrib><creatorcontrib>Adli Ismail, Saiful</creatorcontrib><creatorcontrib>Ali, Mazlan</creatorcontrib><creatorcontrib>MD Zainal, Zaini</creatorcontrib><creatorcontrib>Zareei, Mahdi</creatorcontrib><title>A Hybrid Prediction Model for Energy-Efficient Data Collection in Wireless Sensor Networks</title><title>Symmetry (Basel)</title><description>Energy consumption because of unnecessary data transmission is a significant problem over wireless sensor networks (WSNs). Dealing with this problem leads to increasing the lifetime of any network and improved network feasibility for real time applications. Building on this, energy-efficient data collection is becoming a necessary requirement for WSN applications comprising of low powered sensing devices. In these applications, data clustering and prediction methods that utilize symmetry correlations in the sensor data can be used for reducing the energy consumption of sensor nodes for persistent data collection. In this work, a hybrid model based on decision tree (DT), autoregressive integrated moving average (ARIMA), and Kalman filtering (KF) methods is proposed to predict the data sampling requirement of sensor nodes to reduce unnecessary data transmission. To perform data sampling predictions in the WSNs efficiently, clustering and data aggregation to each cluster head are utilized, mainly to reduce the processing overheads generating the prediction model. Simulation experiments, comparisons, and performance evaluations conducted in various cases show that the forecasting accuracy of our approach can outperform existing Gaussian and probabilistic based models to provide better energy efficiency due to reducing the number of packet transmissions.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Autoregressive models</subject><subject>Clustering</subject><subject>Communication</subject><subject>Data collection</subject><subject>Data management</subject><subject>Data sampling</subject><subject>Data transmission</subject><subject>Decision trees</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Gaussian distribution</subject><subject>Kalman filters</subject><subject>Methods</subject><subject>Nodes</subject><subject>Packet transmission</subject><subject>Performance evaluation</subject><subject>Prediction models</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>Time series</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUEtLAzEYDKJgqT35BwIeZTXJt4_kWGq1Qn2AiuBlyWa_SOp2U5Mtsv_elfXQucwc5gFDyDlnVwCKXcd-ywUXgon0iEwEKyCRSqXHB_qUzGLcsAEZy9KcTcjHnK76KriaPgesnemcb-mDr7Gh1ge6bDF89snSWmccth290Z2mC980OFpdS99dwAZjpC_YxiHziN2PD1_xjJxY3USc_fOUvN0uXxerZP10d7-YrxMjlOwSACNAQG54obnOikoqlIBZVWVK15JrIy0aBZajFAA5YxwKkRWMybqohYUpuRh7d8F_7zF25cbvQztMliLNVVrkcuifksvRZYKPMaAtd8FtdehLzsq__8qD_-AXS31h1g</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Soleymani, Seyed Ahmad</creator><creator>Goudarzi, Shidrokh</creator><creator>Kama, Nazri</creator><creator>Adli Ismail, Saiful</creator><creator>Ali, Mazlan</creator><creator>MD Zainal, Zaini</creator><creator>Zareei, Mahdi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9299-5652</orcidid></search><sort><creationdate>20201201</creationdate><title>A Hybrid Prediction Model for Energy-Efficient Data Collection in Wireless Sensor Networks</title><author>Soleymani, Seyed Ahmad ; Goudarzi, Shidrokh ; Kama, Nazri ; Adli Ismail, Saiful ; Ali, Mazlan ; MD Zainal, Zaini ; Zareei, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-33c23236c17a1a57b89e83e5bb59ad81ac8fec93f1e8233600137257008d7d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Autoregressive models</topic><topic>Clustering</topic><topic>Communication</topic><topic>Data collection</topic><topic>Data management</topic><topic>Data sampling</topic><topic>Data transmission</topic><topic>Decision trees</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Gaussian distribution</topic><topic>Kalman filters</topic><topic>Methods</topic><topic>Nodes</topic><topic>Packet transmission</topic><topic>Performance evaluation</topic><topic>Prediction models</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>Time series</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soleymani, Seyed Ahmad</creatorcontrib><creatorcontrib>Goudarzi, Shidrokh</creatorcontrib><creatorcontrib>Kama, Nazri</creatorcontrib><creatorcontrib>Adli Ismail, Saiful</creatorcontrib><creatorcontrib>Ali, Mazlan</creatorcontrib><creatorcontrib>MD Zainal, Zaini</creatorcontrib><creatorcontrib>Zareei, Mahdi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soleymani, Seyed Ahmad</au><au>Goudarzi, Shidrokh</au><au>Kama, Nazri</au><au>Adli Ismail, Saiful</au><au>Ali, Mazlan</au><au>MD Zainal, Zaini</au><au>Zareei, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Prediction Model for Energy-Efficient Data Collection in Wireless Sensor Networks</atitle><jtitle>Symmetry (Basel)</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>12</volume><issue>12</issue><spage>2024</spage><pages>2024-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Energy consumption because of unnecessary data transmission is a significant problem over wireless sensor networks (WSNs). Dealing with this problem leads to increasing the lifetime of any network and improved network feasibility for real time applications. Building on this, energy-efficient data collection is becoming a necessary requirement for WSN applications comprising of low powered sensing devices. In these applications, data clustering and prediction methods that utilize symmetry correlations in the sensor data can be used for reducing the energy consumption of sensor nodes for persistent data collection. In this work, a hybrid model based on decision tree (DT), autoregressive integrated moving average (ARIMA), and Kalman filtering (KF) methods is proposed to predict the data sampling requirement of sensor nodes to reduce unnecessary data transmission. To perform data sampling predictions in the WSNs efficiently, clustering and data aggregation to each cluster head are utilized, mainly to reduce the processing overheads generating the prediction model. Simulation experiments, comparisons, and performance evaluations conducted in various cases show that the forecasting accuracy of our approach can outperform existing Gaussian and probabilistic based models to provide better energy efficiency due to reducing the number of packet transmissions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym12122024</doi><orcidid>https://orcid.org/0000-0002-9299-5652</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2020-12, Vol.12 (12), p.2024 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_proquest_journals_2469476832 |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Autoregressive models Clustering Communication Data collection Data management Data sampling Data transmission Decision trees Electronic devices Energy consumption Gaussian distribution Kalman filters Methods Nodes Packet transmission Performance evaluation Prediction models Sensors Statistical analysis Time series Wireless networks Wireless sensor networks |
title | A Hybrid Prediction Model for Energy-Efficient Data Collection in Wireless Sensor Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Prediction%20Model%20for%20Energy-Efficient%20Data%20Collection%20in%20Wireless%20Sensor%20Networks&rft.jtitle=Symmetry%20(Basel)&rft.au=Soleymani,%20Seyed%20Ahmad&rft.date=2020-12-01&rft.volume=12&rft.issue=12&rft.spage=2024&rft.pages=2024-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym12122024&rft_dat=%3Cproquest_cross%3E2469476832%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-33c23236c17a1a57b89e83e5bb59ad81ac8fec93f1e8233600137257008d7d2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469476832&rft_id=info:pmid/&rfr_iscdi=true |