Loading…
MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment
Device-free indoor localization may play a critical role in improving passengers' safety in large vessels, particularly for scenarios without equipped radios. However, due to dynamic internal and external influences from the sailing ship such as changing sailing speed, the existing localization...
Saved in:
Published in: | IEEE internet of things journal 2020-12, Vol.7 (12), p.11851-11862 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3 |
container_end_page | 11862 |
container_issue | 12 |
container_start_page | 11851 |
container_title | IEEE internet of things journal |
container_volume | 7 |
creator | Chen, Mozi Liu, Kezhong Ma, Jie Zeng, Xuming Dong, Zheng Tong, Guangmo Liu, Cong |
description | Device-free indoor localization may play a critical role in improving passengers' safety in large vessels, particularly for scenarios without equipped radios. However, due to dynamic internal and external influences from the sailing ship such as changing sailing speed, the existing localization systems suffer huge accuracy degradation in a mobile ship environment. The challenges are mainly due to rich and arbitrary ship motions and the resulting complicated impacts on the indoor wireless channels. To address the challenges, in this article, we first propose a ship motion descriptor to extract discriminative latent representation from complex ship motions by leveraging deep-learning techniques. Based on this representation, we then design a novel fingerprint roaming model, i.e., MoLoc, to automatically learn the predictive fingerprint variation pattern and transfer the online fingerprint measurement to adapt to dynamic ship motions in real time. Furthermore, an unsupervised learning strategy is proposed to train the fingerprint roaming model using unlabeled onboard collected data which do not incur any labor costs. We have implemented and extensively evaluated MoLoc on real-world cruise ships, where experimental results demonstrate that MoLoc improves localization accuracy from 63.2% to 92.8% compared to the state-of-the-art localization methods, including Pilot, LiFS, SpotFi, and AutoFi while achieving a mean error of 0.68 m. |
doi_str_mv | 10.1109/JIOT.2020.3004240 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469477609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9122602</ieee_id><sourcerecordid>2469477609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxTdGEwnyAYyXJp4Xp91ld-vNICgGQqJwbtruVEqgxe5Cop_eEojxNH_yfm8yL0luKfQpBf7wNpkv-gwY9DOAnOVwkXRYxso0Lwp2-a-_TnpNswaAiA0oLzrJauanXj-SpWv2OwwH22BNxtZ9YtgF61ry7uU2jsT4QJ7xYDWm44BIJq72cRVhubE_srXeEeuIJDOv7AbJx8ruyMgdbPBui669Sa6M3DTYO9dushyPFsPXdDp_mQyfpqlmPGvTTFas0kVZGVAlBWPqulIGa6ML4GoAWNagJTOFQppR0KAo43kuea0Uq0qddZP7k-8u-K89Nq1Y-31w8aRgecHzsoxGUUVPKh180wQ0In67leFbUBDHTMUxU3HMVJwzjczdibGI-KfnlLECWPYLRa5zTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469477609</pqid></control><display><type>article</type><title>MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment</title><source>IEEE Xplore (Online service)</source><creator>Chen, Mozi ; Liu, Kezhong ; Ma, Jie ; Zeng, Xuming ; Dong, Zheng ; Tong, Guangmo ; Liu, Cong</creator><creatorcontrib>Chen, Mozi ; Liu, Kezhong ; Ma, Jie ; Zeng, Xuming ; Dong, Zheng ; Tong, Guangmo ; Liu, Cong</creatorcontrib><description>Device-free indoor localization may play a critical role in improving passengers' safety in large vessels, particularly for scenarios without equipped radios. However, due to dynamic internal and external influences from the sailing ship such as changing sailing speed, the existing localization systems suffer huge accuracy degradation in a mobile ship environment. The challenges are mainly due to rich and arbitrary ship motions and the resulting complicated impacts on the indoor wireless channels. To address the challenges, in this article, we first propose a ship motion descriptor to extract discriminative latent representation from complex ship motions by leveraging deep-learning techniques. Based on this representation, we then design a novel fingerprint roaming model, i.e., MoLoc, to automatically learn the predictive fingerprint variation pattern and transfer the online fingerprint measurement to adapt to dynamic ship motions in real time. Furthermore, an unsupervised learning strategy is proposed to train the fingerprint roaming model using unlabeled onboard collected data which do not incur any labor costs. We have implemented and extensively evaluated MoLoc on real-world cruise ships, where experimental results demonstrate that MoLoc improves localization accuracy from 63.2% to 92.8% compared to the state-of-the-art localization methods, including Pilot, LiFS, SpotFi, and AutoFi while achieving a mean error of 0.68 m.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.3004240</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Cruise ships ; Data models ; Dynamics ; Fingerprint recognition ; Fingerprints ; Indoor environments ; Localization ; Marine vehicles ; Mobile ship environment ; Passenger safety ; passive human localization ; Representations ; Sailing ; Sensors ; Ship motion ; Unsupervised learning</subject><ispartof>IEEE internet of things journal, 2020-12, Vol.7 (12), p.11851-11862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3</citedby><cites>FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3</cites><orcidid>0000-0002-0692-7486 ; 0000-0002-1085-7556 ; 0000-0002-6868-2568 ; 0000-0003-3247-4019 ; 0000-0002-6758-3314 ; 0000-0002-7658-6584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9122602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Mozi</creatorcontrib><creatorcontrib>Liu, Kezhong</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Zeng, Xuming</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Tong, Guangmo</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><title>MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Device-free indoor localization may play a critical role in improving passengers' safety in large vessels, particularly for scenarios without equipped radios. However, due to dynamic internal and external influences from the sailing ship such as changing sailing speed, the existing localization systems suffer huge accuracy degradation in a mobile ship environment. The challenges are mainly due to rich and arbitrary ship motions and the resulting complicated impacts on the indoor wireless channels. To address the challenges, in this article, we first propose a ship motion descriptor to extract discriminative latent representation from complex ship motions by leveraging deep-learning techniques. Based on this representation, we then design a novel fingerprint roaming model, i.e., MoLoc, to automatically learn the predictive fingerprint variation pattern and transfer the online fingerprint measurement to adapt to dynamic ship motions in real time. Furthermore, an unsupervised learning strategy is proposed to train the fingerprint roaming model using unlabeled onboard collected data which do not incur any labor costs. We have implemented and extensively evaluated MoLoc on real-world cruise ships, where experimental results demonstrate that MoLoc improves localization accuracy from 63.2% to 92.8% compared to the state-of-the-art localization methods, including Pilot, LiFS, SpotFi, and AutoFi while achieving a mean error of 0.68 m.</description><subject>Adaptation models</subject><subject>Cruise ships</subject><subject>Data models</subject><subject>Dynamics</subject><subject>Fingerprint recognition</subject><subject>Fingerprints</subject><subject>Indoor environments</subject><subject>Localization</subject><subject>Marine vehicles</subject><subject>Mobile ship environment</subject><subject>Passenger safety</subject><subject>passive human localization</subject><subject>Representations</subject><subject>Sailing</subject><subject>Sensors</subject><subject>Ship motion</subject><subject>Unsupervised learning</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE9PAjEQxTdGEwnyAYyXJp4Xp91ld-vNICgGQqJwbtruVEqgxe5Cop_eEojxNH_yfm8yL0luKfQpBf7wNpkv-gwY9DOAnOVwkXRYxso0Lwp2-a-_TnpNswaAiA0oLzrJauanXj-SpWv2OwwH22BNxtZ9YtgF61ry7uU2jsT4QJ7xYDWm44BIJq72cRVhubE_srXeEeuIJDOv7AbJx8ruyMgdbPBui669Sa6M3DTYO9dushyPFsPXdDp_mQyfpqlmPGvTTFas0kVZGVAlBWPqulIGa6ML4GoAWNagJTOFQppR0KAo43kuea0Uq0qddZP7k-8u-K89Nq1Y-31w8aRgecHzsoxGUUVPKh180wQ0In67leFbUBDHTMUxU3HMVJwzjczdibGI-KfnlLECWPYLRa5zTQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, Mozi</creator><creator>Liu, Kezhong</creator><creator>Ma, Jie</creator><creator>Zeng, Xuming</creator><creator>Dong, Zheng</creator><creator>Tong, Guangmo</creator><creator>Liu, Cong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0692-7486</orcidid><orcidid>https://orcid.org/0000-0002-1085-7556</orcidid><orcidid>https://orcid.org/0000-0002-6868-2568</orcidid><orcidid>https://orcid.org/0000-0003-3247-4019</orcidid><orcidid>https://orcid.org/0000-0002-6758-3314</orcidid><orcidid>https://orcid.org/0000-0002-7658-6584</orcidid></search><sort><creationdate>20201201</creationdate><title>MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment</title><author>Chen, Mozi ; Liu, Kezhong ; Ma, Jie ; Zeng, Xuming ; Dong, Zheng ; Tong, Guangmo ; Liu, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Cruise ships</topic><topic>Data models</topic><topic>Dynamics</topic><topic>Fingerprint recognition</topic><topic>Fingerprints</topic><topic>Indoor environments</topic><topic>Localization</topic><topic>Marine vehicles</topic><topic>Mobile ship environment</topic><topic>Passenger safety</topic><topic>passive human localization</topic><topic>Representations</topic><topic>Sailing</topic><topic>Sensors</topic><topic>Ship motion</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mozi</creatorcontrib><creatorcontrib>Liu, Kezhong</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Zeng, Xuming</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Tong, Guangmo</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mozi</au><au>Liu, Kezhong</au><au>Ma, Jie</au><au>Zeng, Xuming</au><au>Dong, Zheng</au><au>Tong, Guangmo</au><au>Liu, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>7</volume><issue>12</issue><spage>11851</spage><epage>11862</epage><pages>11851-11862</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Device-free indoor localization may play a critical role in improving passengers' safety in large vessels, particularly for scenarios without equipped radios. However, due to dynamic internal and external influences from the sailing ship such as changing sailing speed, the existing localization systems suffer huge accuracy degradation in a mobile ship environment. The challenges are mainly due to rich and arbitrary ship motions and the resulting complicated impacts on the indoor wireless channels. To address the challenges, in this article, we first propose a ship motion descriptor to extract discriminative latent representation from complex ship motions by leveraging deep-learning techniques. Based on this representation, we then design a novel fingerprint roaming model, i.e., MoLoc, to automatically learn the predictive fingerprint variation pattern and transfer the online fingerprint measurement to adapt to dynamic ship motions in real time. Furthermore, an unsupervised learning strategy is proposed to train the fingerprint roaming model using unlabeled onboard collected data which do not incur any labor costs. We have implemented and extensively evaluated MoLoc on real-world cruise ships, where experimental results demonstrate that MoLoc improves localization accuracy from 63.2% to 92.8% compared to the state-of-the-art localization methods, including Pilot, LiFS, SpotFi, and AutoFi while achieving a mean error of 0.68 m.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.3004240</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0692-7486</orcidid><orcidid>https://orcid.org/0000-0002-1085-7556</orcidid><orcidid>https://orcid.org/0000-0002-6868-2568</orcidid><orcidid>https://orcid.org/0000-0003-3247-4019</orcidid><orcidid>https://orcid.org/0000-0002-6758-3314</orcidid><orcidid>https://orcid.org/0000-0002-7658-6584</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2020-12, Vol.7 (12), p.11851-11862 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2469477609 |
source | IEEE Xplore (Online service) |
subjects | Adaptation models Cruise ships Data models Dynamics Fingerprint recognition Fingerprints Indoor environments Localization Marine vehicles Mobile ship environment Passenger safety passive human localization Representations Sailing Sensors Ship motion Unsupervised learning |
title | MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoLoc:%20Unsupervised%20Fingerprint%20Roaming%20for%20Device-Free%20Indoor%20Localization%20in%20a%20Mobile%20Ship%20Environment&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Chen,%20Mozi&rft.date=2020-12-01&rft.volume=7&rft.issue=12&rft.spage=11851&rft.epage=11862&rft.pages=11851-11862&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.3004240&rft_dat=%3Cproquest_cross%3E2469477609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469477609&rft_id=info:pmid/&rft_ieee_id=9122602&rfr_iscdi=true |