Loading…

MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment

Device-free indoor localization may play a critical role in improving passengers' safety in large vessels, particularly for scenarios without equipped radios. However, due to dynamic internal and external influences from the sailing ship such as changing sailing speed, the existing localization...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2020-12, Vol.7 (12), p.11851-11862
Main Authors: Chen, Mozi, Liu, Kezhong, Ma, Jie, Zeng, Xuming, Dong, Zheng, Tong, Guangmo, Liu, Cong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3
cites cdi_FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3
container_end_page 11862
container_issue 12
container_start_page 11851
container_title IEEE internet of things journal
container_volume 7
creator Chen, Mozi
Liu, Kezhong
Ma, Jie
Zeng, Xuming
Dong, Zheng
Tong, Guangmo
Liu, Cong
description Device-free indoor localization may play a critical role in improving passengers' safety in large vessels, particularly for scenarios without equipped radios. However, due to dynamic internal and external influences from the sailing ship such as changing sailing speed, the existing localization systems suffer huge accuracy degradation in a mobile ship environment. The challenges are mainly due to rich and arbitrary ship motions and the resulting complicated impacts on the indoor wireless channels. To address the challenges, in this article, we first propose a ship motion descriptor to extract discriminative latent representation from complex ship motions by leveraging deep-learning techniques. Based on this representation, we then design a novel fingerprint roaming model, i.e., MoLoc, to automatically learn the predictive fingerprint variation pattern and transfer the online fingerprint measurement to adapt to dynamic ship motions in real time. Furthermore, an unsupervised learning strategy is proposed to train the fingerprint roaming model using unlabeled onboard collected data which do not incur any labor costs. We have implemented and extensively evaluated MoLoc on real-world cruise ships, where experimental results demonstrate that MoLoc improves localization accuracy from 63.2% to 92.8% compared to the state-of-the-art localization methods, including Pilot, LiFS, SpotFi, and AutoFi while achieving a mean error of 0.68 m.
doi_str_mv 10.1109/JIOT.2020.3004240
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469477609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9122602</ieee_id><sourcerecordid>2469477609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxTdGEwnyAYyXJp4Xp91ld-vNICgGQqJwbtruVEqgxe5Cop_eEojxNH_yfm8yL0luKfQpBf7wNpkv-gwY9DOAnOVwkXRYxso0Lwp2-a-_TnpNswaAiA0oLzrJauanXj-SpWv2OwwH22BNxtZ9YtgF61ry7uU2jsT4QJ7xYDWm44BIJq72cRVhubE_srXeEeuIJDOv7AbJx8ruyMgdbPBui669Sa6M3DTYO9dushyPFsPXdDp_mQyfpqlmPGvTTFas0kVZGVAlBWPqulIGa6ML4GoAWNagJTOFQppR0KAo43kuea0Uq0qddZP7k-8u-K89Nq1Y-31w8aRgecHzsoxGUUVPKh180wQ0In67leFbUBDHTMUxU3HMVJwzjczdibGI-KfnlLECWPYLRa5zTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469477609</pqid></control><display><type>article</type><title>MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment</title><source>IEEE Xplore (Online service)</source><creator>Chen, Mozi ; Liu, Kezhong ; Ma, Jie ; Zeng, Xuming ; Dong, Zheng ; Tong, Guangmo ; Liu, Cong</creator><creatorcontrib>Chen, Mozi ; Liu, Kezhong ; Ma, Jie ; Zeng, Xuming ; Dong, Zheng ; Tong, Guangmo ; Liu, Cong</creatorcontrib><description>Device-free indoor localization may play a critical role in improving passengers' safety in large vessels, particularly for scenarios without equipped radios. However, due to dynamic internal and external influences from the sailing ship such as changing sailing speed, the existing localization systems suffer huge accuracy degradation in a mobile ship environment. The challenges are mainly due to rich and arbitrary ship motions and the resulting complicated impacts on the indoor wireless channels. To address the challenges, in this article, we first propose a ship motion descriptor to extract discriminative latent representation from complex ship motions by leveraging deep-learning techniques. Based on this representation, we then design a novel fingerprint roaming model, i.e., MoLoc, to automatically learn the predictive fingerprint variation pattern and transfer the online fingerprint measurement to adapt to dynamic ship motions in real time. Furthermore, an unsupervised learning strategy is proposed to train the fingerprint roaming model using unlabeled onboard collected data which do not incur any labor costs. We have implemented and extensively evaluated MoLoc on real-world cruise ships, where experimental results demonstrate that MoLoc improves localization accuracy from 63.2% to 92.8% compared to the state-of-the-art localization methods, including Pilot, LiFS, SpotFi, and AutoFi while achieving a mean error of 0.68 m.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.3004240</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Cruise ships ; Data models ; Dynamics ; Fingerprint recognition ; Fingerprints ; Indoor environments ; Localization ; Marine vehicles ; Mobile ship environment ; Passenger safety ; passive human localization ; Representations ; Sailing ; Sensors ; Ship motion ; Unsupervised learning</subject><ispartof>IEEE internet of things journal, 2020-12, Vol.7 (12), p.11851-11862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3</citedby><cites>FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3</cites><orcidid>0000-0002-0692-7486 ; 0000-0002-1085-7556 ; 0000-0002-6868-2568 ; 0000-0003-3247-4019 ; 0000-0002-6758-3314 ; 0000-0002-7658-6584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9122602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Mozi</creatorcontrib><creatorcontrib>Liu, Kezhong</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Zeng, Xuming</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Tong, Guangmo</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><title>MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Device-free indoor localization may play a critical role in improving passengers' safety in large vessels, particularly for scenarios without equipped radios. However, due to dynamic internal and external influences from the sailing ship such as changing sailing speed, the existing localization systems suffer huge accuracy degradation in a mobile ship environment. The challenges are mainly due to rich and arbitrary ship motions and the resulting complicated impacts on the indoor wireless channels. To address the challenges, in this article, we first propose a ship motion descriptor to extract discriminative latent representation from complex ship motions by leveraging deep-learning techniques. Based on this representation, we then design a novel fingerprint roaming model, i.e., MoLoc, to automatically learn the predictive fingerprint variation pattern and transfer the online fingerprint measurement to adapt to dynamic ship motions in real time. Furthermore, an unsupervised learning strategy is proposed to train the fingerprint roaming model using unlabeled onboard collected data which do not incur any labor costs. We have implemented and extensively evaluated MoLoc on real-world cruise ships, where experimental results demonstrate that MoLoc improves localization accuracy from 63.2% to 92.8% compared to the state-of-the-art localization methods, including Pilot, LiFS, SpotFi, and AutoFi while achieving a mean error of 0.68 m.</description><subject>Adaptation models</subject><subject>Cruise ships</subject><subject>Data models</subject><subject>Dynamics</subject><subject>Fingerprint recognition</subject><subject>Fingerprints</subject><subject>Indoor environments</subject><subject>Localization</subject><subject>Marine vehicles</subject><subject>Mobile ship environment</subject><subject>Passenger safety</subject><subject>passive human localization</subject><subject>Representations</subject><subject>Sailing</subject><subject>Sensors</subject><subject>Ship motion</subject><subject>Unsupervised learning</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE9PAjEQxTdGEwnyAYyXJp4Xp91ld-vNICgGQqJwbtruVEqgxe5Cop_eEojxNH_yfm8yL0luKfQpBf7wNpkv-gwY9DOAnOVwkXRYxso0Lwp2-a-_TnpNswaAiA0oLzrJauanXj-SpWv2OwwH22BNxtZ9YtgF61ry7uU2jsT4QJ7xYDWm44BIJq72cRVhubE_srXeEeuIJDOv7AbJx8ruyMgdbPBui669Sa6M3DTYO9dushyPFsPXdDp_mQyfpqlmPGvTTFas0kVZGVAlBWPqulIGa6ML4GoAWNagJTOFQppR0KAo43kuea0Uq0qddZP7k-8u-K89Nq1Y-31w8aRgecHzsoxGUUVPKh180wQ0In67leFbUBDHTMUxU3HMVJwzjczdibGI-KfnlLECWPYLRa5zTQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, Mozi</creator><creator>Liu, Kezhong</creator><creator>Ma, Jie</creator><creator>Zeng, Xuming</creator><creator>Dong, Zheng</creator><creator>Tong, Guangmo</creator><creator>Liu, Cong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0692-7486</orcidid><orcidid>https://orcid.org/0000-0002-1085-7556</orcidid><orcidid>https://orcid.org/0000-0002-6868-2568</orcidid><orcidid>https://orcid.org/0000-0003-3247-4019</orcidid><orcidid>https://orcid.org/0000-0002-6758-3314</orcidid><orcidid>https://orcid.org/0000-0002-7658-6584</orcidid></search><sort><creationdate>20201201</creationdate><title>MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment</title><author>Chen, Mozi ; Liu, Kezhong ; Ma, Jie ; Zeng, Xuming ; Dong, Zheng ; Tong, Guangmo ; Liu, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Cruise ships</topic><topic>Data models</topic><topic>Dynamics</topic><topic>Fingerprint recognition</topic><topic>Fingerprints</topic><topic>Indoor environments</topic><topic>Localization</topic><topic>Marine vehicles</topic><topic>Mobile ship environment</topic><topic>Passenger safety</topic><topic>passive human localization</topic><topic>Representations</topic><topic>Sailing</topic><topic>Sensors</topic><topic>Ship motion</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mozi</creatorcontrib><creatorcontrib>Liu, Kezhong</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Zeng, Xuming</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Tong, Guangmo</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mozi</au><au>Liu, Kezhong</au><au>Ma, Jie</au><au>Zeng, Xuming</au><au>Dong, Zheng</au><au>Tong, Guangmo</au><au>Liu, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>7</volume><issue>12</issue><spage>11851</spage><epage>11862</epage><pages>11851-11862</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Device-free indoor localization may play a critical role in improving passengers' safety in large vessels, particularly for scenarios without equipped radios. However, due to dynamic internal and external influences from the sailing ship such as changing sailing speed, the existing localization systems suffer huge accuracy degradation in a mobile ship environment. The challenges are mainly due to rich and arbitrary ship motions and the resulting complicated impacts on the indoor wireless channels. To address the challenges, in this article, we first propose a ship motion descriptor to extract discriminative latent representation from complex ship motions by leveraging deep-learning techniques. Based on this representation, we then design a novel fingerprint roaming model, i.e., MoLoc, to automatically learn the predictive fingerprint variation pattern and transfer the online fingerprint measurement to adapt to dynamic ship motions in real time. Furthermore, an unsupervised learning strategy is proposed to train the fingerprint roaming model using unlabeled onboard collected data which do not incur any labor costs. We have implemented and extensively evaluated MoLoc on real-world cruise ships, where experimental results demonstrate that MoLoc improves localization accuracy from 63.2% to 92.8% compared to the state-of-the-art localization methods, including Pilot, LiFS, SpotFi, and AutoFi while achieving a mean error of 0.68 m.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.3004240</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0692-7486</orcidid><orcidid>https://orcid.org/0000-0002-1085-7556</orcidid><orcidid>https://orcid.org/0000-0002-6868-2568</orcidid><orcidid>https://orcid.org/0000-0003-3247-4019</orcidid><orcidid>https://orcid.org/0000-0002-6758-3314</orcidid><orcidid>https://orcid.org/0000-0002-7658-6584</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2020-12, Vol.7 (12), p.11851-11862
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2469477609
source IEEE Xplore (Online service)
subjects Adaptation models
Cruise ships
Data models
Dynamics
Fingerprint recognition
Fingerprints
Indoor environments
Localization
Marine vehicles
Mobile ship environment
Passenger safety
passive human localization
Representations
Sailing
Sensors
Ship motion
Unsupervised learning
title MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoLoc:%20Unsupervised%20Fingerprint%20Roaming%20for%20Device-Free%20Indoor%20Localization%20in%20a%20Mobile%20Ship%20Environment&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Chen,%20Mozi&rft.date=2020-12-01&rft.volume=7&rft.issue=12&rft.spage=11851&rft.epage=11862&rft.pages=11851-11862&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.3004240&rft_dat=%3Cproquest_cross%3E2469477609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-3a828c678f0b710ffdd8bfedfc609b50e7d0ca2f6be1310c0b12944a9dbb287c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469477609&rft_id=info:pmid/&rft_ieee_id=9122602&rfr_iscdi=true