Loading…

Intelligent Fault-Tolerant Control System Design and Semi-Physical Simulation Validation of Aero-Engine

In order to improve the reliability and real-time of the control system of aero-engine, an intelligent fault-tolerant control system based on the online sequential extreme learning machine (OS-ELM) is proposed against the sensor faults. This system can realize the online fault diagnosis and signal r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.217204-217212
Main Authors: Liu, Yuan, Chen, Qian, Liu, Shengyi, Sheng, Hanlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-ed206923336d30ac9e594ae6addaa45fbb413fb1f378247792e07693878d25e3
cites cdi_FETCH-LOGICAL-c408t-ed206923336d30ac9e594ae6addaa45fbb413fb1f378247792e07693878d25e3
container_end_page 217212
container_issue
container_start_page 217204
container_title IEEE access
container_volume 8
creator Liu, Yuan
Chen, Qian
Liu, Shengyi
Sheng, Hanlin
description In order to improve the reliability and real-time of the control system of aero-engine, an intelligent fault-tolerant control system based on the online sequential extreme learning machine (OS-ELM) is proposed against the sensor faults. This system can realize the online fault diagnosis and signal reconstruction without a system model. And while considering the traditional PID control robustness and poor anti-interference ability and other shortcomings, an improved global fast non-singular terminal sliding mode control method is used to obtain better control effects, effectively solve the uncertainty problem in aero-engine, and give full play to aero-engine performance. To verify the feasibility and effectiveness of this system based on the above method, a turbofan engine is taken as the research object and semi-physical simulation experiments on fault-tolerant control are conducted on a semi-physical simulation test platform. Results show that the controller of this system can safely and reliably control the aero-engine without losing its control performance under the circumstance that there are faults in engine sensors. The purpose of fault-tolerant control is reached.
doi_str_mv 10.1109/ACCESS.2020.3030157
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469478883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9220782</ieee_id><doaj_id>oai_doaj_org_article_05df8e4782104937ba8549b07217c3cd</doaj_id><sourcerecordid>2469478883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ed206923336d30ac9e594ae6addaa45fbb413fb1f378247792e07693878d25e3</originalsourceid><addsrcrecordid>eNpNUU1r4zAQNaWFlra_oBfDnp3qy5Z0DG66GyhsIaFXIVtjr4IitZJyyL9fdV3KzmVm3sx7M_Cq6gGjFcZIPq77frPbrQgiaEURRbjlF9UNwZ1saEu7y__q6-o-pQMqIQrU8ptq3voMztkZfK6f9cnlZh8cRF3aPvgcg6t355ThWD9BsrOvtTf1Do62ef1zTnbUZW6PJ6ezDb5-086apQxTvYYYmo2frYe76mrSLsH9V76t9s-bff-refn9c9uvX5qRIZEbMAR1klBKO0ORHiW0kmnotDFas3YaBobpNOCJckEY55IA4p2kggtDWqC31XaRNUEf1Hu0Rx3PKmir_gEhzkrHbEcHCrVmEsCKDkZMUj5o0TI5IE4wH-loitaPRes9ho8TpKwO4RR9-V4R1snCFIKWLbpsjTGkFGH6voqR-vRHLf6oT3_Ulz-F9bCwLAB8MyQhqPxD_wKDqosc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469478883</pqid></control><display><type>article</type><title>Intelligent Fault-Tolerant Control System Design and Semi-Physical Simulation Validation of Aero-Engine</title><source>IEEE Xplore Open Access Journals</source><creator>Liu, Yuan ; Chen, Qian ; Liu, Shengyi ; Sheng, Hanlin</creator><creatorcontrib>Liu, Yuan ; Chen, Qian ; Liu, Shengyi ; Sheng, Hanlin</creatorcontrib><description>In order to improve the reliability and real-time of the control system of aero-engine, an intelligent fault-tolerant control system based on the online sequential extreme learning machine (OS-ELM) is proposed against the sensor faults. This system can realize the online fault diagnosis and signal reconstruction without a system model. And while considering the traditional PID control robustness and poor anti-interference ability and other shortcomings, an improved global fast non-singular terminal sliding mode control method is used to obtain better control effects, effectively solve the uncertainty problem in aero-engine, and give full play to aero-engine performance. To verify the feasibility and effectiveness of this system based on the above method, a turbofan engine is taken as the research object and semi-physical simulation experiments on fault-tolerant control are conducted on a semi-physical simulation test platform. Results show that the controller of this system can safely and reliably control the aero-engine without losing its control performance under the circumstance that there are faults in engine sensors. The purpose of fault-tolerant control is reached.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3030157</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aero-engine ; Aerospace engines ; Artificial neural networks ; Control methods ; Control systems ; Control systems design ; Engines ; Fault diagnosis ; Fault tolerance ; Fault tolerant systems ; fault-tolerant control ; Machine learning ; online sequential extreme learning machine ; Physical simulation ; Proportional integral derivative ; Robust control ; semi-physical simulation ; Signal reconstruction ; Simulation ; Sliding mode control ; Training ; Turbofan engines</subject><ispartof>IEEE access, 2020, Vol.8, p.217204-217212</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ed206923336d30ac9e594ae6addaa45fbb413fb1f378247792e07693878d25e3</citedby><cites>FETCH-LOGICAL-c408t-ed206923336d30ac9e594ae6addaa45fbb413fb1f378247792e07693878d25e3</cites><orcidid>0000-0003-4484-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9220782$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Liu, Shengyi</creatorcontrib><creatorcontrib>Sheng, Hanlin</creatorcontrib><title>Intelligent Fault-Tolerant Control System Design and Semi-Physical Simulation Validation of Aero-Engine</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to improve the reliability and real-time of the control system of aero-engine, an intelligent fault-tolerant control system based on the online sequential extreme learning machine (OS-ELM) is proposed against the sensor faults. This system can realize the online fault diagnosis and signal reconstruction without a system model. And while considering the traditional PID control robustness and poor anti-interference ability and other shortcomings, an improved global fast non-singular terminal sliding mode control method is used to obtain better control effects, effectively solve the uncertainty problem in aero-engine, and give full play to aero-engine performance. To verify the feasibility and effectiveness of this system based on the above method, a turbofan engine is taken as the research object and semi-physical simulation experiments on fault-tolerant control are conducted on a semi-physical simulation test platform. Results show that the controller of this system can safely and reliably control the aero-engine without losing its control performance under the circumstance that there are faults in engine sensors. The purpose of fault-tolerant control is reached.</description><subject>Aero-engine</subject><subject>Aerospace engines</subject><subject>Artificial neural networks</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Engines</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>fault-tolerant control</subject><subject>Machine learning</subject><subject>online sequential extreme learning machine</subject><subject>Physical simulation</subject><subject>Proportional integral derivative</subject><subject>Robust control</subject><subject>semi-physical simulation</subject><subject>Signal reconstruction</subject><subject>Simulation</subject><subject>Sliding mode control</subject><subject>Training</subject><subject>Turbofan engines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r4zAQNaWFlra_oBfDnp3qy5Z0DG66GyhsIaFXIVtjr4IitZJyyL9fdV3KzmVm3sx7M_Cq6gGjFcZIPq77frPbrQgiaEURRbjlF9UNwZ1saEu7y__q6-o-pQMqIQrU8ptq3voMztkZfK6f9cnlZh8cRF3aPvgcg6t355ThWD9BsrOvtTf1Do62ef1zTnbUZW6PJ6ezDb5-086apQxTvYYYmo2frYe76mrSLsH9V76t9s-bff-refn9c9uvX5qRIZEbMAR1klBKO0ORHiW0kmnotDFas3YaBobpNOCJckEY55IA4p2kggtDWqC31XaRNUEf1Hu0Rx3PKmir_gEhzkrHbEcHCrVmEsCKDkZMUj5o0TI5IE4wH-loitaPRes9ho8TpKwO4RR9-V4R1snCFIKWLbpsjTGkFGH6voqR-vRHLf6oT3_Ulz-F9bCwLAB8MyQhqPxD_wKDqosc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Yuan</creator><creator>Chen, Qian</creator><creator>Liu, Shengyi</creator><creator>Sheng, Hanlin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4484-1218</orcidid></search><sort><creationdate>2020</creationdate><title>Intelligent Fault-Tolerant Control System Design and Semi-Physical Simulation Validation of Aero-Engine</title><author>Liu, Yuan ; Chen, Qian ; Liu, Shengyi ; Sheng, Hanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ed206923336d30ac9e594ae6addaa45fbb413fb1f378247792e07693878d25e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aero-engine</topic><topic>Aerospace engines</topic><topic>Artificial neural networks</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Engines</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>fault-tolerant control</topic><topic>Machine learning</topic><topic>online sequential extreme learning machine</topic><topic>Physical simulation</topic><topic>Proportional integral derivative</topic><topic>Robust control</topic><topic>semi-physical simulation</topic><topic>Signal reconstruction</topic><topic>Simulation</topic><topic>Sliding mode control</topic><topic>Training</topic><topic>Turbofan engines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Liu, Shengyi</creatorcontrib><creatorcontrib>Sheng, Hanlin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuan</au><au>Chen, Qian</au><au>Liu, Shengyi</au><au>Sheng, Hanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Fault-Tolerant Control System Design and Semi-Physical Simulation Validation of Aero-Engine</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>217204</spage><epage>217212</epage><pages>217204-217212</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to improve the reliability and real-time of the control system of aero-engine, an intelligent fault-tolerant control system based on the online sequential extreme learning machine (OS-ELM) is proposed against the sensor faults. This system can realize the online fault diagnosis and signal reconstruction without a system model. And while considering the traditional PID control robustness and poor anti-interference ability and other shortcomings, an improved global fast non-singular terminal sliding mode control method is used to obtain better control effects, effectively solve the uncertainty problem in aero-engine, and give full play to aero-engine performance. To verify the feasibility and effectiveness of this system based on the above method, a turbofan engine is taken as the research object and semi-physical simulation experiments on fault-tolerant control are conducted on a semi-physical simulation test platform. Results show that the controller of this system can safely and reliably control the aero-engine without losing its control performance under the circumstance that there are faults in engine sensors. The purpose of fault-tolerant control is reached.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3030157</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4484-1218</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.217204-217212
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2469478883
source IEEE Xplore Open Access Journals
subjects Aero-engine
Aerospace engines
Artificial neural networks
Control methods
Control systems
Control systems design
Engines
Fault diagnosis
Fault tolerance
Fault tolerant systems
fault-tolerant control
Machine learning
online sequential extreme learning machine
Physical simulation
Proportional integral derivative
Robust control
semi-physical simulation
Signal reconstruction
Simulation
Sliding mode control
Training
Turbofan engines
title Intelligent Fault-Tolerant Control System Design and Semi-Physical Simulation Validation of Aero-Engine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Fault-Tolerant%20Control%20System%20Design%20and%20Semi-Physical%20Simulation%20Validation%20of%20Aero-Engine&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yuan&rft.date=2020&rft.volume=8&rft.spage=217204&rft.epage=217212&rft.pages=217204-217212&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3030157&rft_dat=%3Cproquest_cross%3E2469478883%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-ed206923336d30ac9e594ae6addaa45fbb413fb1f378247792e07693878d25e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469478883&rft_id=info:pmid/&rft_ieee_id=9220782&rfr_iscdi=true