Loading…
Effect of temperature on the development time and life‐time fecundity of Trichopria anastrephae parasitizing Drosophila suzukii
The aim of this study was to evaluate the effect of temperature (10, 15, 20, 25, 30 and 35°C), on the development time and life‐time fecundity of Trichopria anastrephae Lima, 1940 (Hymenoptera: Diapriidae) parasitizing Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae). D. suzukii pupae t...
Saved in:
Published in: | Journal of applied entomology (1986) 2020-12, Vol.144 (10), p.857-865 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study was to evaluate the effect of temperature (10, 15, 20, 25, 30 and 35°C), on the development time and life‐time fecundity of Trichopria anastrephae Lima, 1940 (Hymenoptera: Diapriidae) parasitizing Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae). D. suzukii pupae that were up to 24‐hr old were submitted to T. anastrephae parasitism for 24 hr. They were placed in plastic containers (50 ml) (ten pupae per container) in climatic chambers at temperatures of 10, 15, 20, 25, 30 and 35°C ± 1°C with a relative humidity of 70% ± 10% and a 12 hr photoperiod. For the adult phase, T. anastrephae couples that were up to 24 hr old were each placed in plastic cages (300 ml) and kept at the same temperatures cited above until their deaths. The higher numbers of parasitism and offspring production were obtained at temperatures between 15 and 25ºC. At the temperatures of 10 and 35ºC, there was no emergence of individuals. The lower thermal threshold (Tt) for the egg to adult period was ≈ 14.6°C for males and females with thermal constants (K) of 384.61 and 432.90, respectively. In terms of the fertility life table, T. anastrephae at 20 and 25°C presented shorter generation time (T) and higher net reproductive rates (Ro) in relation to other temperatures. The data show the ability of T. anastrephae to adapt to different thermal conditions, which is important for biological control programmes of D. suzukii. |
---|---|
ISSN: | 0931-2048 1439-0418 |
DOI: | 10.1111/jen.12799 |